Journal of Guangxi Normal University(Natural Science Edition) ›› 2022, Vol. 40 ›› Issue (6): 59-68.doi: 10.16088/j.issn.1001-6600.2022021601
Previous Articles Next Articles
NIU Xuede1, GAO Bingpeng1*, REN Rongrong2, XU Mingming1
CLC Number:
[1] 李城恩, 潘晓映, 王美涵, 等.基于区间型数据计量的我国粮食产量研究[J].广西师范大学学报(自然科学版), 2022, 40(1): 206-215. DOI: 10.16088/j.issn.1001-6600.2021060914. [2] 袁培森, 曹益飞, 马千里, 等.基于Random Forest的水稻细菌性条斑病识别方法研究[J].农业机械学报, 2021, 52(1): 139-145, 208. DOI: 10.6041/j.issn.1000-1298.2021.01.015. [3] SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]// 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Los Alamitos, CA: IEEE Computer Society, 2015: 1-9. DOI: 10.1109/CVPR.2015.7298594. [4] FERENTIONS K P.Deep learning models for plant disease detection and diagnosis[J].Computers and Electronics in Agriculture, 2018, 145: 311-318. DOI: 10.1016/j.compag.2018.01.009. [5] ZHANG X H, QIAO Y, MENG F F, et al. Identification of maize leaf diseases using improved deep convolutional neural networks[J]. IEEE Access, 2018, 6: 30370-30377. DOI: 10.1109/ACCESS.2018.2844405. [6] 陈善雄, 伍胜, 于显平, 等.基于卷积神经网络结合图像处理技术的荞麦病害识别[J].农业工程学报, 2021, 37(3): 155-163. DOI: 10.11975/j.issn.1002-6819.2021.03.019. [7] 鲍文霞, 孙庆, 胡根生, 等.基于多路卷积神经网络的大田小麦赤霉病图像识别[J].农业工程学报, 2020, 36(11): 174-181. DOI: 10.11975/j.issn.1002-6819.2020.11.020. [8] 任守纲, 贾馥玮, 顾兴健, 等.反卷积引导的番茄叶部病害识别及病斑分割模型[J].农业工程学报, 2020, 36(12): 186-195. DOI: 10.11975/j.issn.1002-6819.2020.12.023. [9] 刘文波, 叶涛, 李颀.基于改进SOLO v2的番茄叶部病害检测方法[J].农业机械学报, 2021, 52(8): 213-220. DOI: 10.6041/j.issn.1000-1298.2021.08.021. [10] KARTHIK R, HARIHARAN M, ANAND S, et al. Attention embedded residual CNN for disease detection in tomato leaves[J]. Applied Soft Computing, 2020, 86: 105933. DOI: 10.1016/j.asoc.2019.105933. [11] KRISHNASWAMY RANGARAJAN A, PURUSHOTHAMAN R. Disease classification in eggplant using pre-trained VGG16 and MSVM[J].Scientific Reports, 2020, 10: 2322. DOI: 10.1038/s41598-020-59108-x. [12] VERMA S, CHUG A, SINGH A P. Exploringcapsule networks for disease classification in plants[J].Journal of Statistics and Management Systems, 2020, 23(2): 307-315. DOI: 10.1080/09720510.2020.1724628. [13] XIE B B, LIU J Z, HE M, et al. Research progress on autonomous navigation technology of agricultural robot[C]// 2021 IEEE 11th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER).Piscatway, NJ: IEEE, 2021: 891-898. DOI: 10.1109/CYBER53097.2021.9588152. [14] 李睿,王莹,王恒.基于树莓派的室内植物病虫害识别系统设计[J].电子设计工程,2022,30(8):114-118.DOI: 10.14022/j.issn1674-6236.2022.08.024. [15] 苏博妮,化希耀,范振岐.基于移动互联网的水稻病虫害信息管理系统研究与设计[J].电子设计工程,2019,27(2):1-5.DOI: 10.14022/j.cnki.dzsjgc.2019.02.001. [16] 孟亮, 郭小燕, 杜佳举, 等.一种轻量级CNN农作物病害图像识别模型[J].江苏农业学报, 2021, 37(5): 1143-1150. DOI: 10.3969/j.issn.1000-4440.2021.05.008. [17] HOWARD A, SANDLER M, CHEN B, et al.Searching for MobileNetV3[C]// 2019 IEEE/CVF International Conference on Computer Vision (ICCV).Los Alamitos, CA: IEEE Computer Society, 2019: 1314-1324. DOI: 10.1109/ICCV.2019.00140. [18] HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011-2023. DOI: 10.1109/TPAMI.2019.2913372. [19] 黄林生, 罗耀武, 杨小冬, 等.基于注意力机制和多尺度残差网络的农作物病害识别[J].农业机械学报, 2021, 52(10): 264-271. DOI: 10.6041/j.issn.1000-1298.2021.10.027. [20] SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Los Alamitos, CA: IEEE Computer Society, 2018: 4510-4520. DOI: 10.1109/CVPR.2018.00474. [21] PAN S J, YANG Q.A survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10): 1345-1359. DOI: 10.1109/TKDE.2009.191. [22] 张雪松, 庄严, 闫飞, 等.基于迁移学习的类别级物体识别与检测研究与进展[J].自动化学报, 2019, 45(7): 1224-1243. DOI: 10.16383/j.aas.c180093. [23] 樊湘鹏, 许燕, 周建平, 等.基于迁移学习和改进CNN的葡萄叶部病害检测系统[J].农业工程学报, 2021, 37(6): 151-159. DOI: 10.11975/j.issn.1002-6819.2021.06.019. [24] 王东方, 汪军.基于迁移学习和残差网络的农作物病害分类[J].农业工程学报, 2021, 37(4): 199-207. DOI: 10.11975/j.issn.1002-6819.2021.4.024. [25] 徐建鹏, 王杰, 徐祥, 等.基于RAdam卷积神经网络的水稻生育期图像识别[J].农业工程学报, 2021, 37(8): 143-150. DOI: 10.11975/j.issn.1002-6819.2021.08.016. [26] LIU L Y, JIANG H M, HE P C, et al. On the variance of the adaptive learning rate and beyond[EB/OL]. (2020-04-17)[2022-02-16]. https://arxiv.org/abs/1908.03265v3. DOI: 10.48550/arXiv.1908.03265. [27] 黄建平, 陈镜旭, 李克新, 等.基于神经结构搜索的多种植物叶片病害识别[J].农业工程学报, 2020, 36(16): 166-173. DOI: 10.11975/j.issn.1002-6819.2020.16.021. [28] 邓文轩, 杨航, 靳婷.基于注意力机制的图像分类降维方法[J].广西师范大学学报(自然科学版), 2021, 39(2): 32-40. DOI: 10.16088/j.issn.1001-6600.2020090704. |
[1] | TIAN Sheng, SONG Lin. Traffic Sign Recognition Based on CNN and Bagging Integration [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 35-46. |
|