Journal of Guangxi Normal University(Natural Science Edition) ›› 2022, Vol. 40 ›› Issue (6): 50-58.doi: 10.16088/j.issn.1001-6600.2022022303

Previous Articles     Next Articles

Research on Micro-patch Identification of Desert Grassland Based on UAV Remote Sensing

ZHANG Tao, DU Jianmin*   

  1. College of Mechanical and Electrical Engineering, Inner Mongolia Agricultural University, Hohhot Inner Mongolia 010018, China
  • Received:2022-02-23 Revised:2022-04-14 Online:2022-11-25 Published:2023-01-17

Abstract: Desert steppe is the limit state of steppe and the transition from steppe to desert steppe. The identification of patches among different communities in desert steppe areas is important for evaluating grassland desertification. It’s valuabe to explore an efficient and rapid way to identify the distribution of patches among different communities in desert steppe areas for the dynamic monitoring of grassland desertification and the rational use and preservation of grassland resources. In this paper, remote sensing image data from desert grassland areas are collected by a UAV equipped with a high-resolution spectrometer, and principal component analysis (PCA) is used to reduce the dimensionality of the data. After improving the convolutional neural network and fusing the features of different convolutional layers, a 2D convolutional neural network (MFF-2DCNN) recognition method with multilayer feature fusion is proposed. The results show that the overall accuracy of the model for micropatch recognition in desert steppe areas is 92.23%, which is 4.35, 25.71 and 0.95 percentage points higher than that of an SVM, a KNN model and the original 2D-CNN model, respectively. The effective combination of UAV remote sensing and convolution neural network provides a new idea for the identification and classification of different communities in desert steppe.

Key words: hyperspectral image, convolution neural network, recognition and classification, desert steppe, micro-patch;unmanned aerial vehicle

CLC Number: 

  • S812
[1] 张庆, 刘璐瑶, 徐雪, 等. 内蒙古草原家庭牧场可持续发展研究[J]. 草业学报, 2021,30(9): 168-181. DOI: 10.11686/cyxb2021058.
[2] 刘荣荣, 王平, 代心灵, 等. 不同密度布氏田鼠对内蒙古典型草原菌根真菌群落的影响[J]. 草业学报, 2021,30(11): 76-86. DOI: 10.11686/cyxb2021113.
[3] BAI Y F, WU J G, PAN Q M, et al. Positive linear relationship between productivity and diversity: evidence from the Eurasian steppe[J]. The Journal of Applied Ecology, 2007,44(5): 1023-1034. DOI: 10.1111/j.1365-2664.2007.01351.x.
[4] ZHANG X M, JOHNSTON E R, BARBERÁN A, et al. Decreased plant productivity resulting from plant group removal experiment constrains soil microbial functional diversity[J]. Global Change Biology, 2017,23(10): 4318-4332. DOI: 10.1111/gcb.13783.
[5] SHANG C W, WU T, HUANG G L, et al. Weak sustainability is not sustainable: socioeconomic and environmental assessment of Inner Mongolia for the past three decades[J]. Resources, Conservation and Recycling, 2019,141: 243-252. DOI: 10.1016/j.resconrec.2018.10.032.
[6] HE D, HUANG X L, TIAN Q J, et al. Changes in vegetation growth dynamics and relations with climate in Inner Mongolia under more strict multiple pre-processing (2000-2018)[J]. Sustainability, 2020,12(6): 2534. DOI: 10.3390/su12062534.
[7] WANG C W, CHEN Q, FAN H S, et al. Evaluating satellite hyperspectral (Orbita) and multispectral (Landsat 8 and Sentinel-2) imagery for identifying cotton acreage[J]. International Journal of Remote Sensing, 2021,42(11): 4042-4063. DOI: 10.1080/01431161.2021.1887543.
[8] LI K, WANG L, YIN D M. Deriving corn and soybeans fractions with land remote-sensing satellite (system, Landsat) imagery by accounting for endmember variability on Google Earth Engine[J]. International Journal of Remote Sensing, 2021,42(12): 4493-4513. DOI: 10.1080/01431161.2021.1897184.
[9] 陈千, 陈利霞. 基于张量环分解的非局部高光谱图像去噪算法[J].桂林电子科技大学学报,2021,41(2):146-153.DOI: 10.16725/j.cnki.cn45-1351/tn.2021.02.010.
[10] 王丽,王威,刘勃妮.基于免疫克隆的图像稀疏分解算法研究[J].电子设计工程,2021,29(7):1-5.DOI: 10.14022/j.issn1674-6236.2021.07.001.
[11] 郭棚跃,刘振丙.一种基于栈式压缩自编码的高光谱图像分类方法[J].桂林电子科技大学学报,2021,41(4):298-304.DOI: 10.16725/j.cnki.cn45-1351/tn.2021.04.007.
[12] CHEN S Z, GAO Y, FAN K, et al. Prediction of drought-induced components and evaluation of drought damage of tea plants based on hyperspectral imaging[J]. Frontiers in Plant Science, 2021,12: 695102. DOI: 10.3389/fpls.2021.695102.
[13] ACHARYA B S, BHANDARI M, BANDINI F, et al. Unmanned aerial vehicles in hydrology and water management: applications, challenges, and perspectives[J]. Water Resources Research, 2021,57(11): e2021WR029925. DOI: 10.1029/2021WR029925.
[14] ZHOU J F, PAVEK M J, SHELTON S C, et al. Aerial multispectral imaging for crop hail damage assessment in potato[J]. Computers and Electronics in Agriculture, 2016,127: 406-412. DOI: 10.1016/j.compag.2016.06.019.
[15] 康拥朝, 毕玉革, 杜建民, 等. 基于高光谱MNF-SVM法荒漠化草原地表微斑块识别研究[J]. 内蒙古农业大学学报(自然科学版), 2021,42(06): 76-81. DOI: 10.16853/j.cnki.1009-3575.2021.06.013.
[16] 皮伟强, 杜建民, 陈程, 等. 基于高光谱SMPI法的草原地表微斑块识别与分类[J]. 光电子·激光, 2018,29(11): 1237-1243. DOI: 10.16136/j.joel.2018.11.0032.
[17] 朱相兵, 毕玉革, 刘浩, 等. 基于高光谱遥感的荒漠草原鼠洞识别方法研究[J]. 土壤通报, 2020,51(2): 263-268. DOI: 10.19336/j.cnki.trtb.2020.02.02.
[18] CHEN C, ZHANG J J, ZHENG C H, et al. Classification of hyperspectral data using a multi-channel convolutional neural network[C]// Intelligent Computing Methodologies, Cham: Springer, 2018: 81-92. DOI: 10.1007/978-3-319-95957-3_10.
[19] CAI H J, CHEN T. Multi-dimension CNN for hyperspectral image classificaton[C]// IGARSS 2020-2020 IEEE International Geoscience and Remote Sensing Symposium. Piscataway: IEEE, 2020: 1275-1278. DOI: 10.1109/IGARSS39084.2020.9323561.
[20] 靳宇曦, 刘芳, 张新杰, 等. 短花针茅荒漠草原生态系统净碳交换对载畜率的响应[J]. 生态环境学报, 2018,27(4): 643-650. DOI: 10.16258/j.cnki.1674-5906.2018.04.007.
[21] 尚天浩, 毛鸿欣, 张俊华, 等. 基于PCA敏感波段筛选与SVM建模的银川平原土壤有机质高光谱估算[J]. 生态学杂志, 2021,40(12): 4128-4136. DOI: 10.13292/j.1000-4890.202112.017.
[22] 欧阳爱国, 万启明, 李雄, 等. 高光谱成像的水稻螟虫蛀入检测方法[J]. 光谱学与光谱分析, 2021,41(12): 3844-3850.
[23] HAQUE M F, KANG D S. PPCNN: object detection using fine-grained feature extraction and localization[J]. Journal of Korean Institute of Information Technology, 2021,19(2): 29-37. DOI: 10.14801/jkiit.2021.19.2.29.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!