Journal of Guangxi Normal University(Natural Science Edition) ›› 2022, Vol. 40 ›› Issue (6): 37-49.doi: 10.16088/j.issn.1001-6600.2021080602

Previous Articles     Next Articles

Progress in Microwave-Assisted Ionothermal Synthesis

HAN Chenghao1, YUAN Yueke1, LU Tianliang1, WANG Jianfeng1,2, HAN Li1,2*   

  1. 1. School of Chemical Engineering, Zhengzhou University, Zhengzhou Henan 450001, China;
    2. School of Ecology and Environment, Zhengzhou University, Zhengzhou Henan 450001, China
  • Received:2021-08-06 Revised:2021-10-11 Online:2022-11-25 Published:2023-01-17

Abstract: Microwave-assisted ionothermal synthesis is a new synthesis technology that uses ionic liquid or low co-melting mixtures as solvents and template agents, supplemented by microwave heating. It not only retains the characteristics of low melting point and non-volatile of ionic liquid/low co-melting mixture, but also provides a new development perspective for material synthesis, conforms to the carbon neutralization development goal. In this paper, the application of microwave ion heat in material synthesis is reviewed, including the synthesis of molecular decoration, the synthesis of nanomaterials and the synthesis of some other materials. And the prospect of microwave ion thermal synthesis is explored.

Key words: microwave, ionothermal synthesis, ionic liquid, eutectic mixture, carbon neutrality

CLC Number: 

  • TQ031.2
[1] 吴烨, 金毅, 周宁怀.微波辐射下固相合成Cu(Gly)2·H2O的微型实验[J].广西师范大学学报(自然科学版), 2000, 18(S1): 74-76. DOI: 10.16088/j.issn.1001-6600.2000.s1.034.
[2] XU Y P, TIAN Z J, WANG S J, et al. Microwave-enhanced ionothermal synthesis of aluminophosphate molecular sieves[J]. Angewandte Chemie International Edition, 2006, 45(24): 3965-3970. DOI: 10.1002/anie.200600054.
[3] CAI R, LIU Y, GU S, et al.Ambient pressure dry-gel conversion method for zeolite MFI synthesis using ionic liquid and microwave heating[J]. Journal of the American Chemical Society, 2010, 132(37): 12776-12777. DOI: 10.1021/ja101649b.
[4] NG E P, WONG K L, NG D T L, et al. AlPO-5 nanocrystals templated by 1-ethyl-2, 3-dimethylimidazolium hydroxide and their textural and water sorption properties[J]. Materials Chemistry and Physics, 2017, 188: 49-57. DOI: 10.1016/j.matchemphys.2016.12.031.
[5] NG E P, NG D T L, AWALA H, et al. Microwave synthesis of colloidal stable AlPO-5 nanocrystals with high water adsorption capacity and unique morphology[J]. Materials Letters, 2014, 132: 126-129. DOI: 10.1016/j.matlet.2014.06.022.
[6] 臧丽君, 邵国林, 李昆兰, 等. 微波离子热合成纳米方钠石粉体[J]. 大连工业大学学报, 2013, 32(3): 220-223. DOI: 10.19670/j.cnki.dlgydxxb.2013.03.018.
[7] 邵国林, 魏立纲, 马英冲, 等. 离子热法合成方钠石膜及其在金属防腐方面的应用[J]. 化工学报, 2015, 66(S1): 292-296. DOI: 10.11949/j.issn.0438-1157.20150136.
[8] JHUNG S H, CHANG J S, HWANG Y K, et al. Crystal morphology control of AFI type molecular sieves with microwave irradiation[J]. Journal of Materials Chemistry, 2004, 14(2): 280-285. DOI: 10.1039/b309142b.
[9] VENNA S R, CARREON M A. Microwave assisted phase transformation of silicoaluminophosphate zeolite crystals[J]. Journal of Materials Chemistry, 2009, 19(20): 3138-3140. DOI: 10.1039/b903316e.
[10] ZHAO X H, WEN J J, ZHAO J B, et al. Hierarchically structured SAPO-5 molecular sieve catalysts with tailored mesoporosity for alkylation reaction[J]. Journal of Porous Materials, 2015, 22(3): 577-584. DOI: 10.1007/s10934-015-9929-5.
[11] 张峻维, 段维婷, 赵新红. 纳米薄层SAPO-5分子筛的离子热合成及催化性能[J]. 精细化工, 2020, 37(3): 547-554. DOI: 10.13550/j.jxhg.20190693.
[12] ZHAO X H, ZHANG X X, HAO Z X, et al. Synthesis of FeAPO-5 molecular sieves with high iron contents via improved ionothermal method and their catalytic performances in phenol hydroxylation[J]. Journal of Porous Materials, 2018, 25(4): 1007-1016. DOI: 10.1007/s10934-017-0511-1.
[13] ZHAO X H, DUAN W T, WANG Q P, et al. Microwave-assisted ionothermal synthesis of Fe-LEV molecular sieve with high iron content in low-dosage of eutectic mixture[J]. Microporous and Mesoporous Materials, 2019, 275: 253-262. DOI: 10.1016/j.micromeso.2018.09.005.
[14] ZHAO X H, KANG C X, WANG H, et al. Ionothermal synthesis of FeAlPO-16 molecular sieve by microwave irradiation in eutectic mixture[J]. Journal of Porous Materials, 2011, 18(5): 615-621. DOI: 10.1007/s10934-010-9417-x.
[15] ZHAO X H, WANG H, KANG C X, et al. Ionothermal synthesis of mesoporous SAPO-5 molecular sieves by microwave heating and using eutectic solvent as structure-directing agent[J]. Microporous & Mesoporous Materials, 2012, 151: 501-505. DOI: 10.1016/j.micromeso.2011.10.009.
[16] 李恒杰, 高鹏飞, 薛晓璐, 等. 低共熔体中微波离子热法合成TAPO-5分子筛[J]. 分子催化, 2018, 32(3): 218-227. DOI: 10.16084/j.cnki.issn1001-3555.2018.03.003.
[17] LIANG Z H, ZHU Y J. Microwave-assisted synthesis of single-crystalline CuO nanoleaves[J]. Chemistry Letters, 2004, 33(10): 1314-1315. DOI: 10.1246/cl.2004.1314.
[18] WANG J, CAO J M, FANG B Q, et al. Synthesis and characterization of multipod, flower-like, and shuttle-like ZnO frameworks in ionic liquids[J]. Materials Letters, 2005, 59(11): 1405-1408. DOI: 10.1016/j.matlet.2004.11.062.
[19] 高秀敏. 在离子液体中合成二氧化锆微粉的研究[D]. 哈尔滨: 哈尔滨工程大学,2008. DOI: 10.7666/d.y1436179.
[20] LIU Y H, LIU P I, CHUNG L C, et al. Diverse effects of microwave heating on anatase crystallization in ionothermal synthesis of nanostructured TiO2[J]. Journal of Materials Science, 2011, 46(14): 4826-4831. DOI: 10.1007/s10853-011-5394-y.
[21] LI X L, LIU M H, CHENG H X, et al. Development of ionic liquid assisted-synthesized nano-silver combined with vascular endothelial growth factor as wound healing in the care of femoral fracture in the children after surgery[J]. Journal of Photochemistry and Photobiology B: Biology, 2018, 183: 385-390. DOI: 10.1016/j.jphotobiol.2018.03.003.
[22] JANG H, LEE J R, KIM S J, et al. Concerns and breakthroughs of combining ionic liquids with microwave irradiation for the synthesis of Ru nanoparticles via decarbonylation[J]. Journal of Colloid and Interface Science, 2021, 599: 828-836. DOI: 10.1016/j.jcis.2021.04.046.
[23] DING K L, MIAO Z J, LIU Z M, et al. Facile synthesis of high quality TiO2 nanocrystals in ionic liquid via a microwave-assisted process[J]. Journal of the American Chemical Society, 2007, 129(20): 6362-6363. DOI: 10.1021/ja070809c.
[24] CAO J M, WANG J, FANG B Q, et al. Microwave-assisted synthesis of flower-like ZnO nanosheet aggregates in a room-temperature ionic liquid[J]. Chemistry Letters, 2004, 33(10): 1332-1333. DOI: 10.1246/cl.2004.1332.
[25] 胡栓峰. 在离子液体中合成纳/微米材料的研究[D]. 南京: 南京航空航天大学, 2008. DOI: 10.7666/d.d052429.
[26] BÜHLER G, FELDMANN C. Microwave-assisted synthesis of luminescent LaPO4: Ce, Tb nanocrystals in ionic liquids[J]. Angewandte Chemie International Edition, 2006, 45(29): 4864-4867. DOI: 10.1002/anie.200600244.
[27] WANG H Q, NANN T. Monodisperse upconverting nanocrystals by microwave-assisted synthesis[J]. ACS Nano, 2009, 3(11): 3804-3808. DOI: 10.1021/nn9012093.
[28] JIANG Y, ZHU Y J. Microwave-assisted synthesis of sulfide M2S3 (M = Bi, Sb) nanorods using an ionic liquid[J]. Journal of Physical Chemistry B, 2005, 109(10): 4361-4364. DOI: 10.1021/jp044350.
[29] DU C F, LI J R, HUANG X Y, et al. Microwave-assisted ionothermal synthesis of SnSex nanodots: a facile precursor approach towards SnSe2 nanodots/graphene nanocomposites[J]. RSC Advances, 2016, 6(12): 9835-9842. DOI: 10.1039/c5ra24500a.
[30] CHEN L F, ZHANG T, CHENG H Y, et al. A microwave assisted ionic liquid route to prepare bivalent Mn5O8 nanoplates for 5-hydroxymethylfurfural oxidation[J]. Nanascale, 2020, 12(34): 17902-17914. DOI: 10.1039/d0nr04738d.
[31] 吴织. 低共熔溶剂合成锂离子电池正极材料纳米结构LiMnPO4/C的工艺及性能研究[D]. 南宁: 广西大学, 2017.
[32] ZOU H, LI Z H, LUAN Y X, et al. Fast synthesis of nanostructured ZnO particles from an ionic liquid precursor tetrabutylammonium hydroxide[J]. Current Opinion in Solid State and Materials Science, 2010, 14(5): 75-82. DOI: 10.1016/j.cossms.2010.03.001.
[33] 蒋亚. 微波加热制备空心和锯齿形貌Bi2Te3晶体[J]. 无机化学学报, 2010, 26(9): 1695-1698.
[34] 李建荣, 黄小荥. 微波辅助离子热合成晶态化合物Ag2(tu)3Cl2[C]// 第六届全国环境催化与环境材料学术会议论文集. 成都:中国化学会催化委员会,2009:443-444.
[35] 崔岩, 郭成玉, 王晓化, 等. 微波技术在沸石分子筛材料合成中的应用研究进展[J]. 工业催化, 2016, 24(3): 1-9. DOI: 10.3969/j.issn.1008-1143.2016.03.001.
[36] YIN Y, MA C H, LI W, et al. Rapid conversion of glucose to 5-hydroxymethylfurfural using a MoCl3 catalyst in an ionic liquid with microwave irradiation[J]. Industrial Crops and Products, 2021, 160: 113091. DOI: 10.1016/j.indcrop.2020.113091.
[37] LI Y S, YANG W S. Microwave synthesis of zeolite membranes: a review[J]. Journal of Membrane Science, 2008, 316(1/2): 3-17. DOI: 10.1016/j.memsci.2007.08.054.
[38] CHEN X, ZHANG N Q, SUN K N. A vapor-phase corrosion strategy to hierarchically mesoporous nanosheet-assembled gearlike pillar arrays for super-performance lithium storage[J]. Journal of Physical Chemistry C, 2012, 116(40): 21224-21231. DOI: 10.1021/jp3065568.
[39] DAI S, JU Y H, GAO H J, et al. Preparation of silica aerogel using ionic liquids as solvents[J]. Chemical Communications, 2000(3): 243-244. DOI: 10.1039/a907147d.
[40] JIN K, HUANG X Y, PANG L, et al. [Cu(I)(bpp)]BF4: the first extended coordination network prepared solvothermally in an ionic liquid solvent[J]. Chemical Communications, 2002, 23: 2872-2873. DOI: 10.1039/b209937n.
[41] COOPER E R, ANDREWS C D, WHEATLEY P S, et al. Ionic liquids and eutectic mixtures as solvent and template in synthesis of zeolite analogues[J]. Nature, 2004, 430(7003): 1012-1016. DOI: 10.1038/nature02860.
[42] ABBOTT A P, CAPPER G, DAVIES D L, et al. Novel solvent properties of choline chloride/urea mixtures[J]. Chemical Communications, 2003, 9(1): 70-71. DOI: 10.1039/b210714g.
[43] MA Z, YU J H, DAI S. Preparation of inorganic materials using ionic liquids[J]. Advanced Materials, 2010, 22(2): 261-285. DOI: 10.1002/adma.200900603.
[44] 李恒杰. TAPO-5分子筛的合成、改性以及催化性能研究[D]. 太原:山西大学,2018.
[45] LEADBEATER N E, TORENIUS H M. A study of the ionic liquid mediated microwave heating of organic solvents[J]. Journal of Organic Chemistry, 2002, 67(9): 3145-3148. DOI: 10.1021/jo016297g.
[46] KEGLEVICH G. Microwaves as “Co-catalysts” or as substitute for catalysts in oganophosphorus chemistry[J]. Molecules, 2021, 26(4): 1196. DOI: 10.3390/molecules26041196.
[47] BIBBY D M, DALE M P. Synthesis of silica-sodalite from nonaqueous systems[J]. Nature, 1985, 317(6033): 157-158. DOI: 10.1038/317157a0.
[48] WILKES J S. A short history of ionic liquids: from molten salts to neoteric solvents[J]. Green Chemistry, 2002, 4(2): 73-80. DOI: 10.1039/b110838g.
[49] 徐晓冬, 高秀敏, 刘建清, 等. 微波辅助离子液体法在无机纳米材料合成中的应用[J]. 材料导报, 2008, 22(7): 53-55, 64.
[50] BHAWAWET N, ESSNER J B, ATWOOD J L, et al. On the non-innocence of the imidazolium cation in a rapid microwave synthesis of oleylamine-capped gold nanoparticles in an ionic liquid[J]. Chemical Communications, 2018, 54(54): 7523-7526. DOI: 10.1039/c8cc03150a.
[51] LEE J H, CHO K K, LEE J R, et al.Manganese fluoride nanoparticles synthesized by microwave irradiation using ionic liquid-ethylene glycol mixtures: room-temperature photoluminescence, crystalline phase, and morphology[J]. Crystal Growth and Design, 2021, 21(3): 1406-1412. DOI: 10.1021/acs.cgd.0c01522.
[52] SCHAUMANN J, LOOR M, ÜNAL D, et al. Improving the ZT value of thermoelectrics by nanostructuring: tuning the nanoparticle morphology of Sb2Te3 by using ionic liquids[J]. Dalton Transactions, 2017, 46(3): 656-668. DOI: 10.1039/c6dt04323b.
[53] ALAMMAR T, HAMM I, GRASMIK V, et al. Microwave-assisted synthesis of perovskite SrSnO3 nanocrystals in ionic liquids for photocatalytic applications[J]. Inorganic Chemistry, 2017, 56(12): 6920-6932. DOI: 10.1021/acs.inorgchem.7b00279.
[54] 刘佩珏. 微波合成新型光催化材料及其光催化性能的研究[D]. 上海: 上海师范大学,2015. DOI: 10.7666/d.D642361.
[55] MIAO Y C, LIAN Z C, HUO Y N, et al. Microwave-assisted ionothermal synthesis of hierarchical microcube-like BiOBr with enhanced photocatalytic activity[J]. Chinese Journal of Catalysis, 2018, 39(8): 1411-1417. DOI: 10.1016/S1872-2067(18)63080-3.
[56] MENG Y S, HAN W Q, ZHANG Z, et al. LiFePO4 particles coated with N-doped carbon membrane[J]. Journal of Nanoscience and Nanotechnology, 2017, 17(3): 2000-2005. DOI: 10.1166/jnn.2017.12869.
[57] TOHIDI M, GHANBARI A, HONARASA F. Synthesis of copper and silver nanoparticles by using microwave-assisted ionic liquid crystal method and their application for nonenzymatic hydrogen peroxide determination[J]. Electrocatalysis, 2021, 12(4): 350-361. DOI: 10.1007/s12678-021-00653-y.
[58] WRAGG D S, BYRNE P J, GIRIAT G, et al. In situ comparison of ionothermal kinetics under microwave and conventional heating[J]. Journal of Physical Chemistry C, 2009, 113(48): 20553-20558. DOI: 10.1021/jp907785t.
[59] YANG L S, LU H M. Microwave-assisted ionothermal synthesis and characterization of zeolitic imidazolate framework-8[J]. Chinese Journal of Chemistry, 2012, 30(5): 1040-1044. DOI: 10.1002/cjoc.201100595.
[60] ZHOU L, LU H M, YANG L S. Microwave ionothermal synthesis of ZIF-61 and its application on the curing process of cyanate ester(CE)[J]. Materials Letters, 2014, 125: 59-62. DOI: 10.1016/j.matlet.2014.03.148.
[61] LIAO J H, WU P C, HUANG W C. Ionic liquid as solvent for the synthesis and crystallization of a coordination polymer: (EMI)[Cd(BTC)](EMI = 1-ethyl-3-methylimidazolium, BTC = 1, 3, 5-benzenetricarboxylate)[J]. Crystal Growth and Design, 2006, 6(5): 1062-1063. DOI: 10.1021/cg0504197.
[62] ZHANG W, LI C, YUAN Y P, et al. Highly energy- and time-efficient synthesis of porous triazine-based framework: microwave-enhanced ionothermal polymerization and hydrogen uptake[J]. Journal of Materials Chemistry, 2010, 20(31): 6413-6415. DOI: 10.1039/c0jm01392g.
[63] LIN Z J, WRAGG D S, MORRIS R E.Microwave-assisted synthesis of anionic metal-organic frameworks under ionothermal conditions[J]. Chemical Communications, 2006(19): 2021-2023. DOI: 10.1039/b600814c.
[64] 黄飞, 屈飞强, 魏先文, 等.微波协同离子液体催化合成富马酸二甲酯的工艺研究及应用[J].陕西师范大学学报(自然科学版), 2015, 43(2): 53-58. DOI: 10.15983/j.cnki.jsnu.2015.02.322.
[1] YU Qingfen. Preparation and Properties of Ionic Liquids Containing HexahydrateMagnesium Chloride [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(3): 97-103.
[2] LAN Yuwei, YI Qilei, HUANG Yantao, LIU Jinling, TAN Yanfang. Microwave-assisted Synthesis of CdTe Quantum Dotsand Application on Dye-sensitized Solar Cell [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(3): 104-110.
[3] CHENG Li-chun, HU Shi-qi, LIN Pei-hao, ZHOU Huai-ying, PAN Shun-kang. Effect of Co on Microwave Absorbing Properties of Fe-Si Alloy [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(1): 26-30.
[4] DENG Hua, XU Dan-dan, LI Ming-shun, LI Jin-cheng. Comparison of Different Digestion Methods in Analyzing Heavy Metals Content in Soils [J]. Journal of Guangxi Normal University(Natural Science Edition), 2010, 28(3): 80-83.
[5] PAN Shun-kang, CHENG Li-chun, LIN Pei-hao, LU Chang-fu, LUO Xiao-tao, YANG Tao. Microwave Properties of Fe-Cr Alloy [J]. Journal of Guangxi Normal University(Natural Science Edition), 2010, 28(2): 87-90.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!