Journal of Guangxi Normal University(Natural Science Edition) ›› 2022, Vol. 40 ›› Issue (4): 79-90.doi: 10.16088/j.issn.1001-6600.2021093002
Previous Articles Next Articles
CAI Likun1,2,3, WU Yunbing1,2,3, CHEN Ganlin1,2,3, LIU Chongling1,2,3, LIAO Xiangwen1,2,3*
CLC Number:
[1] LI Y, PAN Q, WANG S H, et al. A Generative Model for category text generation[J]. Information Sciences, 2018, 450: 301-315. DOI: 10.1016/j.ins.2018.03.050. [2]张建华, 陈家骏. 自然语言生成综述[J]. 计算机应用研究, 2006,23(8): 1-3,13. DOI:10.3969/j.issn.1001-3695.2006.08.001. [3]蒋晶晶, 牟向伟, 胡家兴, 等. 文本生成模型研究[J]. 价值工程, 2015, 34(13): 185-188. DOI: 10.14018/j.cnki.cn13-1085/n.2015.13.068. [4]袁江林, 郭志刚, 陈刚, 等. 基于深度学习的文本自动生成技术研究综述[J]. 信息工程大学学报, 2018, 19(5): 616-620. DOI: 10.3969/j.issn.1671-0673.2018.05.020. [5]梁俊杰, 韦舰晶, 蒋正锋. 生成对抗网络GAN综述[J]. 计算机科学与探索, 2020, 14(1): 1-17.DOI: 10.3778/j.issn.1673-9418.1910026. [6]NIE W L, NARODYTSKA N, PATEL A. RelGAN: relational generative adversarial networks for text generation[C]// International Conference on Learning Representations 2019. New Orleans, LA: ICLR, 2019: 1-20. [7]石磊, 王毅, 成颖, 等. 自然语言处理中的注意力机制研究综述[J]. 数据分析与知识发现, 2020, 4(5): 1-14. DOI: 10.11925/infotech.2096-3467.2019.1317. [8]WANG K, WAN X J. SentiGAN: generating sentimental texts via mixture adversarial networks[C]// Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence. Stockholm, Sweden: IJCAI, 2018: 4446-4452. DOI: 10.24963/ijcai.2018/618. [9]LIU Z Y, WANG J H, LIANG Z W. CatGAN: category-aware generative adversarial networks with hierarchical evolutionary learning for category text generation[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(5): 8425-8432. DOI: 10.1609/aaai.v34i05.6361. [10]周飞燕, 金林鹏, 董军.卷积神经网络研究综述[J]. 计算机学报, 2017, 40(6): 1229-1251. DOI: 10.11897/SP.J.1016.2017.01229. [11]杨丽, 吴雨茜, 王俊丽, 等. 循环神经网络研究综述[J]. 计算机应用, 2018, 38(S2): 1-6,26. [12]李良友, 贡正仙, 周国栋. 机器翻译自动评价综述[J]. 中文信息学报, 2014, 28(3): 81-91.DOI: 10.3969/j.issn.1003-0077.2014.03.011. [13]ZHU Y M, LU S D, ZHENG L, et al. Texygen: a benchmarking platform for text generation models[C]// The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval. New York, NY: ACM Press, 2018: 1097-1100. DOI: 10.1145/3209978.3210080. [14]KUSNER M J, HERNNDEZ-LOBATO J M. GANS for sequences of discrete elements with the gumbel-softmax distribution[EB/OL]. (2016-11-12)[2021-09-30]. http://arxiv.org/abs/1611.04051. DOI: 10.48550/arXiv.1611.04051. [15]YU L T, ZHANG W N, WANG J, et al. SeqGAN: sequence generative adversarial nets with policy gradient[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2017, 31(1): 2852-2858. [16]刘全, 翟建伟, 章宗长, 等. 深度强化学习综述[J]. 计算机学报, 2018, 41(1): 1-27. DOI: 10.11897/SP.J.1016.2018.00001. [17]RADFORD A, NARASIMHAN K, SALIMANS T, et al. Improving language understanding by generative pre-training[EB/OL]. (2018-06-09)[2021-09-30].http://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf. [18]RADFORD A, WU J, CHILD R, et al. Language models are unsupervised multitask learners[EB/OL]. (2019-02-14)[2021-09-30]. http://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf. [19]BROWN T B, MANN B, RYDER N, et al. Language models are few-shot learners[C]// Advances in Neural Information Processing Systems 33 (NeurIPS 2020). Red Hook, NY: Curran Associates, Inc., 2020: 1877-1901. [20]LI J T, SONG Y, ZHANG H S, et al. Generating classical Chinese poems via conditional variational autoencoder and adversarial training[C]// Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: Association for Computational Linguistics, 2018: 3890-3900. DOI: 10.18653/v1/D18-1423. [21]DUAN Y, XU C W, PEI J X, et al. Pre-train and Plug-in: flexible conditional text generation with variational auto-encoders[C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA: Association for Computational Linguistics, 2020: 253-262. DOI: 10.18653/v1/2020.acl-main.23. [22]WANG K, WAN X J. Automatic generation of sentimental texts via mixture adversarial networks[J]. Artificial Intelligence, 2019, 275: 540-558. DOI: 10.1016/j.artint.2019.07.003. [23]王丽萍, 丰美玲, 邱启仓,等. 偏好多目标进化算法研究综述[J]. 计算机学报, 2019, 42(6): 1289-1315. DOI: 10.11897/SP.J.1016.2019.01289. [24]SANTORO A, FAULKNER R, RAPOSO D, et al.Relational recurrent neural networks[C]// Advances in Neural Information Processing Systems 31 (NeurIPS 2018). Red Hook, NY: Curran Associates, Inc., 2018: 1-12. [25]HUANG L, WANG W M, CHEN J, et al. Attention on attention for image captioning[C]// 2019 IEEE/CVF International Conference on Computer Vision (ICCV 2019). Los Alamitos, CA: IEEE Computer Society, 2019: 4633-4642. DOI: 10.1109/ICCV.2019.00473. [26]HE R N, RAVULA A, KANAGAL B, et al. RealFormer: transformer likes residual attention[C]// Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021. Stroudsburg, PA: Association for Computational Linguistics, 2021: 929-943. DOI: 10.18653/v1/2021.findings-acl.81. [27]JOLICOEUR-MARTINEAU A.The relativistic discriminator: a key element missing from standard GAN[C]// International Conference on Learning Representations 2019. New Orleans, LA: ICLR, 2019: 1-26. [28]SOCHER R, PERELYGIN A, WU J, et al.Recursive deep models for semantic compositionality over a sentiment treebank[C]// Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: Association for Computational Linguistics, 2013: 1631-1642. [29]McAULEY J, TARGETT C, SHI Q F, et al. Image-based recommendations on styles and substitutes[C]// Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, NY: ACM Press, 2015: 43-52. DOI: 10.1145/2766462.2767755. |
[1] | PENG Tao, TANG Jing, HE Kai, HU Xinrong, LIU Junping, HE Ruhan. Emotion Recognition Based on Multi-gait Feature Fusion [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 104-111. |
[2] | XUE Qiwei, WU Xiru. Vehicle Detection for Autonomous Vehicle System Based on Multi-modal Feature Fusion [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(2): 37-48. |
[3] | ZHANG Weibin, WU Jun, YI Jianbing. Research on Feature Fusion Controlled Items Detection Algorithm Based on RFB Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 34-46. |
[4] | BAI Jie, GAO Haili, WANG Yongzhong, YANG Laibang, XIANG Xiaohang, LOU Xiongwei. Detection of Students’ Classroom Performance Based on Faster R-CNN and Transfer Learning with Multi-Channel Feature Fusion [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(5): 1-11. |
[5] | ZHANG Canlong, LI Yanru, LI Zhixin, WANG Zhiwen. Block Target Tracking Based on Kernel Correlation Filter and Feature Fusion [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(5): 12-23. |
|