Journal of Guangxi Normal University(Natural Science Edition) ›› 2022, Vol. 40 ›› Issue (3): 185-193.doi: 10.16088/j.issn.1001-6600.2021071801
Previous Articles Next Articles
CHEN Gaojian, WANG Jing*, LI Qianwen, YUAN Yunjing, CAO Jiachen
CLC Number:
[1]HUTTER F, KOTTHOFF L, VANSCHOREN J. Automated machine learning: methods, systems, challenges[M]. Berlin: Springer, 2019. [2]VANSCHOREN J, VAN RIJN J N, BISCHL B, et al. OpenML: networked science in machine learning[J]. ACM SIGKDD Explorations Newsletter, 2013, 15(2): 49-60. DOI: 10.1145/2641190.2641198. [3]BAYDIN A G, PEARLMUTTER B A, RADUL A A, et al. Automatic differentiation in machine learning: a survey[J]. The Journal of Machine Learning Research, 2017, 18(1): 5595-5637. [4]崔佳旭,杨博. 贝叶斯优化方法和应用综述[J]. 软件学报,2018,29(10):3068-3090. [5]季辉,丁泽军. 双人博弈问题中的蒙特卡洛树搜索算法的改进[J]. 计算机科学, 2018, 45(1):140-143. [6]李智勇,黄滔,陈少淼,等. 约束优化进化算法综述[J]. 软件学报, 2017, 28(6): 1529-1546.DOI: 10.13328/j.cnki.jos.005259. [7]刘全,翟建伟,章宗长,等. 深度强化学习综述[J]. 计算机学报, 2018,41(1): 1-27. DOI: 10.11897/sp.j.1016.2018.00001. [8]张爱军, 杨泽斌. 自动化机器学习中的超参调优方法[J]. 中国科学:数学, 2020, 50(5):695-710. [9]KOTTHOFF L, THORNTON C, HOOS H H, et al. Auto-WEKA 2.0: automatic model selection and hyperparameter optimization in WEKA[J]. The Journal of Machine Learning Research, 2017, 18(1): 826-830. [10]FEURER M, KLEIN A, EGGENSPERGER K, et al. Efficient and robust automated machine learning[C]// Proceedings of the 28th International Conference on Neural Information Processing Systems. New York: ACM, 2015: 2755-2763. [11]BERGSTRA J, BARDENET R,BENGIO Y, et al. Algorithms for hyper-parameter optimization[C]// Proceedings of the 24th International Conference on Neural Information Processing Systems.New York: ACM, 2011: 2546-2554. [12]SWEARINGEN T, DREVO W, CYPHERS B, et al. ATM: a distributed, collaborative, scalable system for automated machine learning[C]// 2017 IEEE International Conference on Big Data(Big Data). Piscataway, NJ:IEEE, 2017: 151-162. [13]OLSON R S, MOORE J H. TPOT: a tree-based pipeline optimization tool for automating machine learning[C]// Proceedings of the Workshop on Automatic Machine Learning. New York:PMLR ,2016: 66-74. [14]CHEN B, WU H, MO W, et al. Autostacker: a compositional evolutionary learning system[EB/OL].(2018-03-02)[2021-09-09]. http://arxiv.org/abs/1803.00684. [15]SILVER D, HUBERT T, SCHRITTWIESER J, et al. Mastering chess and shogi by self-play with a general reinforcement learning algorithm[EB/OL].(2017-12-05)[2021-09-09]. https://arxiv.org/abs/1712.01815. [16]DRORI I, KRISHNAMURTHY Y, RAMPIN R, et al. AlphaD3M: machine learning pipeline synthesis[EB/OL].(2021-11-03)[2021-12-20]. https://arxiv.org/abs/2111.02508. DOI: 10.48550/arXiv.2111.02508. [17]GAMA J, BRAZDIL P. Characterization of classification algorithms[C]// EPIA 1995: Progress in Artificial Intelligence. Berlin: Springer, 1995: 189-200. DOI: 10.1007/3-540-60428-6_16. [18]张忠林,曹志宇,李元韬. 基于加权欧式距离的k_means算法研究[J]. 郑州大学学报(工学版),2010,31(1):89-92. [19]颜奇. 基于皮尔逊相关系数的差分隐私决策树方法研究[D].桂林:广西师范大学,2021. [20]马宏伟,张光卫,李鹏. 协同过滤推荐算法综述[J]. 小型微型计算机系统, 2009, 30(7):1282-1288. [21]刘婷婷,汪云海,屠长河,等. 基于蒙特卡罗树搜索的树图布局[J]. 计算机辅助设计与图形学学报,2021,33(9):1367-1376. [22]MCALEER S, AGOSTINELLI F, SHMAKOV A, et al. Solving the Rubik’s cube without human knowledge[EB/OL].(2018-05-18)[2021-09-09]. https://arxiv.org/pdf/1805.07470.pdf. [23]AYE T T, LEE G K K, SU Y, et al. Layman analytics system: a cloud-enabled system for data analytics workflow recommendation[J]. IEEE Transactions on Automation Science and Engineering, 2016, 14(1): 160-170. DOI:10.1109/TASE.2016.2610521. [24]WU H C, LUK R W P, WONG K F, et al. Interpreting TF-IDF term weights as making relevance decisions[J]. ACM Transactions on Information Systems, 2008, 26(3):1-37. DOI:10.1145/1361684.1361686. [25]SCHULDT C, LAPTEV I, CAPUTO B. Recognizing human actions: a local SVM approach[C]// Proceedings of the 17th International Conference on Pattern Recognition. Piscataway,NJ: IEEE, 2004: 32-36. DOI: 10.1109/ICPR.2004.1334462. [26]曾兆伟, 曹健. 数据分析服务流程模型推荐[J].小型微型计算机系统,2019,40(7):1374-1379. |
[1] | TANG Fengzhu, TANG Xin, LI Chunhai, LI Xiaohuan. Dynamic Task Allocation Method for UAVs Based on Deep Reinforcement Learning [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(6): 63-71. |
|