Journal of Guangxi Normal University(Natural Science Edition) ›› 2022, Vol. 40 ›› Issue (3): 194-201.doi: 10.16088/j.issn.1001-6600.2021071002

Previous Articles     Next Articles

Byzantine Fault Tolerant Consensus Algorithm Based on Verifiable Random Function and BLS Signature

BAI Shangwang*, MA Xiaoqian, GAO Gaimei, LIU Chunxia, DANG Weichao   

  1. College of Computer Science and Technology, Taiyuan University of Science and Technology, Taiyuan Shanxi 030024, China
  • Received:2021-07-10 Revised:2021-09-09 Online:2022-05-25 Published:2022-05-27

Abstract: The existence of no more than 1/3 of the total number of Byzantine nodes in the network can be tolerated by Practical Byzantine Fault Tolerance (PBFT) consensus algorithm. So PBFT consensus algorithm is often used as the consensus algorithm of the permissioned blockchains. However, the selection rule of the primary nodes is simple and the communication complexity is high in the PBFT consensus algorithm. A Byzantine fault tolerant consensus algorithm based on verifiable random function and BLS signature is proposed to improve PBFT consensus algorithm, which is called VBBFT consensus algorithm. In VBBFT consensus, Verifiable Random Functions is used to select primary nodes from the candidate set of consensus nodes. The master node is used as the coordinator of message collection and sending. At the same time , the process of information interaction between nodes is transformed into the process of BLS signature. This way can reduce the communication complexity and ensures the security of information interaction between nodes. The multi-node simulation results show that compared with Practical Byzantine Fault Tolerant consensus algorithm, the transaction throughput has increased by 62.3% and reduced the delay by 12% in VBBFT consensus algorithm.

Key words: practical Byzantine fault tolerance, verifiable random function, permissioned blockchain, BLS signature, consensus algorithm

CLC Number: 

  • TP311.13
[1]张亮,刘百祥,张如意,等.区块链技术综述[J].计算机工程,2019,45(5):1-12.DOI: 10.19678/j.issn.1000-3428.0053554.
[2]刘懿中,刘建伟,张宗洋,等.区块链共识机制研究综述[J].密码学报,2019,6(4):395-432.DOI:10.13868/j.cnki.jcr.000311.
[3]邵奇峰,金澈清,张召,等.区块链技术:架构及进展[J].计算机学报,2018,41(5):969-988.DOI: 10.11897/SP.J.1016.2018.00969.
[4]袁勇,倪晓春,曾帅,等.区块链共识算法的发展现状与展望[J].自动化学报,2018,44(11):2011-2022.DOI: 10.16383/j.aas.2018.c180268.
[5]夏清,窦文生,郭凯文,等.区块链共识协议综述[J].软件学报,2021,32(2):277-299.DOI:10.13328/j.cnki.jos.006150.
[6]KING S, NADAL S. PPCoin: peer-to-peer crypto-currency with proof-of-stake[EB/OL].(2012-08-19)[2021-09-09]. https://decred.org/research/king2012.pdf.
[7]LARIMER D. Delegated proof-of-stake consensus[EB/OL].(2014-04-03)[2021-09-09]. https://how.bitshares.works/en/master/technology/dpos.html.
[8]黄嘉成,许新华,王世纯.委托权益证明共识机制的改进方案[J].计算机应用,2019,39(7):2162-2167. DOI: 10.11772/j.issn.1001-9081.2018122527.
[9]付瑶瑶,李盛恩.授权股份证明共识机制的改进方案[J].计算机工程与应用,2020,56(19):48-54.
[10]吴梦宇,朱国胜,吴善超.基于工作量证明和权益证明改进的区块链共识机制[J].计算机应用,2020,40(8):2274-2278.
[11]MILUTINOVIC M, HE W, WU H, et al. Proof of luck: an efficient blockchain consensus protocol[C]// Proceedings of the 1st Workshop on System Software for Trusted Execution. New York:ACM,2016:1-6. DOI: 10.1145/3007788.3007790.
[12]CHEN L, XU L, SHAH N, et al.On security analysis of proof-of-elapsed-time (PoET)[C]// International Symposium on Stabilization, Safety, and Security of Distributed Systems, SSS 2017. Berlin:Springer,2017:282-297. DOI: 10.1007/978-3-319-69084-1_19.
[13]BENTOV I, LEE C, MIZRAHI A, et al.Proof of activity: extending bitcoin’s proof of work via proof of stake[J]. ACM SIGMETRICS Performance Evaluation Review, 2014, 42(3):34-37.
[14]CASTRO M, LISKOV B. Practical Byzantine fault tolerance[C]// Proceedings of the Third Symposium on Operating Systems Design and Implementation.New York:ACM, 1999:173-186.
[15]范捷,易乐天,舒继武.拜占庭系统技术研究综述[J].软件学报.2013,24(6):1346-1360.DOI: 10.3724/SP.J.1001.2013.04395.
[16]GUETA G G, ABRAHAM I, GROSSMAN S, et al.SBFT:a scalable and decentralized trust infrastructure[C]// 2019 49th Annual IEEE/IFIP International Conference on Dependable Systems and Networks(DSN).Piscataway,NJ: IEEE,2019: 568-580.
[17]ZHANG J J, RONG Y Y, CAO J N, et al.DBFT: a Byzantine fault tolerant protocol with graceful performance degradation[C]// 2019 38th Symposium on Reliable Distributed Systems (SRDS). Piscataway,NJ: IEEE, 2019:123-132.DOI: 10.1109/SRDS47363.2019.00023.
[18]黄冬艳,李浪,陈斌,等. RBFT:基于Raft集群的拜占庭容错共识机制[J].通信学报,2021,42(3):209-219.
[19]陈佳伟,冼祥斌,杨振国,等.结合BLS聚合签名改进实用拜占庭容错共识算法[J].计算机应用研究,2021,38(7):1952-1955,1962.DOI:10.19734/j.issn.1001-3695.2020.12.0403.
[20]MICALI S, RABIN M, VADHAN S. Verifiable random functions[C]// 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).Piscataway,NJ: IEEE, 1999:120-130. DOI: 10.1109/SFFCS.1999.814584.
[21]佟铮. 基于区块链的公开可验证随机数生成方法研究[D].武汉:武汉理工大学,2018.
[22]GILAD Y, HEMO R, MICALI S, et al. Algorand: scaling byzantine agreements for cryptocurrencies[C]// Proceedings of the 26th Symposium on Operating Systems Principles. New York: ACM, 2017:51-68.
[23]HANKE T, MOVAHEDI M, WILLIAMS D. Dfinity technology overview series, consensus system[EB/OL].(2018-01-23)[2021-09-09]. https://dfinity.org/pdf-viewer/library/dfinity-consensus.pdf.
[24]DAVID B, GAŽI P, KIAYLAS A, et al. Ouroboros Praos: an adaptively-secure, semi-synchronous proof-of-stake Blockchain[C]// Advances in Cryptology-EUROCRYPT 2018. Berlin: Spring, 2018:66-98. DOI:10.1007/978-3-319-78375-8_3.
[25]BONEH D, BOYEN X. Short signatures without random oracles[C]// Advances in Cryptology-EUROCRYPT 2004. Berlin: Springer, 2004: 56-73. DOI:10.1007/978-3-540-24676-3_4.
[26]BONEH D, DRIJVERS M, NEVEN G. Compact multi-signatures for smaller blockchains[C]// Advances in Cryptology-ASIACRYPT 2018. Berlin: Springer, 2018:435-464. DOI: 10.1007/978-3-030-03329-3_15.
[1] LI Muhang, HAN Meng, CHEN Zhiqiang, WU Hongxin, ZHANG Xilong. Survey of Algorithms Oriented to Complex High Utility Pattern Mining [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 13-30.
[2] CHEN Jian-hui, ZHONG Ning. A Data-Brain Based Approach for Constructing the MetadataCube of Neuroimaging Data [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(1): 102-108.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] AI Yan, JIA Nan, WANG Yuan, GUO Jing, PAN Dongdong. Review of Statistical Methods and Applications of Genetic Association Analysis for Multiple Traits and Multiple Locus[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 1 -14 .
[2] BAI Defa, XU Xin, WANG Guochang. Review of Generalized Linear Models and Classification for Functional Data[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 15 -29 .
[3] ZENG Qingfan, QIN Yongsong, LI Yufang. Empirical Likelihood Inference for a Class of Spatial Panel Data Models[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 30 -42 .
[4] ZHANG Zhifei, DUAN Qian, LIU Naijia, HUANG Lei. High-dimensional Nonlinear Regression Model Based on JMI[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 43 -56 .
[5] YANG Di, FANG Yangxin, ZHOU Yan. New Category Classification Research Based on MEB and SVM Methods[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 57 -67 .
[6] CHEN Zhongxiu, ZHANG Xingfa, XIONG Qiang, SONG Zefang. Estimation and Test for Asymmetric DAR Model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 68 -81 .
[7] DU Jinfeng, WANG Hairong, LIANG Huan, WANG Dong. Progress of Cross-modal Retrieval Methods Based on Representation Learning[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 1 -12 .
[8] LI Muhang, HAN Meng, CHEN Zhiqiang, WU Hongxin, ZHANG Xilong. Survey of Algorithms Oriented to Complex High Utility Pattern Mining[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 13 -30 .
[9] CHAO Rui, ZHANG Kunli, WANG Jiajia, HU Bin, ZHANG Weicong, HAN Yingjie, ZAN Hongying. Construction of Chinese Multimodal Knowledge Base[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 31 -39 .
[10] LI Zhengguang, CHEN Heng, LIN Hongfei. Identification of Adverse Drug Reaction on Social Media Using Bi-directional Language Model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 40 -48 .