Journal of Guangxi Normal University(Natural Science Edition) ›› 2022, Vol. 40 ›› Issue (3): 202-209.doi: 10.16088/j.issn.1001-6600.2021071502

Previous Articles    

Balanced Placement Strategy of Cloud Data Based on Particle Swarm Optimization Algorithm

ZHENG Lining1, JIN Xuesong2, YUN Lijun3*   

  1. 1. School of Information, Yunnan Normal University, Kunming Yunnan 650500, China;
    2. Information Network Center, Second People’s Hospital of Yuxi, Yuxi Yunnan 653100, China;
    3. Key Laboratory of Optoelectronic Information Technology, Yunnan Normal University, Kunming Yunnan 650500, China
  • Received:2021-07-15 Revised:2021-09-09 Online:2022-05-25 Published:2022-05-27

Abstract: In the cloud data storage system with multiple storage nodes, how to keep the load balance level of the cloud storage system to a reasonable value and minimize the time of data retrieval is a problem worth studying. To solve this problem, this paper proposes a balanced placement strategy of cloud data based on particle swarm optimization algorithm (BPCD). Firstly, a cloud storage system model is presented. Secondly, the Gini coefficient is introduced as the index to measure the load balancing level of the system, and a multi-objective constrained optimization model is constructed by combining the objective function of data retrieval time. Thirdly, the particle swarm optimization algorithm is used to solve the problem, which mainly includes four processes: data node coding and parameter setting, population initialization, particle swarm spatial search and algorithm iteration. Finally, the proposed algorithm is compared with the traditional cloud data placement algorithm. Simulation experiments show that the proposed cloud data balanced placement strategy has good effects in optimizing the load level and data retrieval time of the cloud storage system.

Key words: cloud storage system, load balancing, retrieval time, multi-objective optimization, particle swarm

CLC Number: 

  • TP301
[1]IJAZ A, ZHANG L, GRAU M, et al. Enabling massive IoT in 5G and beyond systems: PHY radio frame design considerations[J]. IEEE Access, 2016, 4: 3322-3339. DOI:10.1109/ACCESS.2016.2584178.
[2]GUBBI J, BUYYA R, MARUSIC S, et al. Internet of things(IoT): a vision, architectural elements, and future directions[J]. Future Generations Computer Systems, 2013, 29(7): 1645-1660.
[3]GANTZ J, REINSE D. Extracting value from chaos[R/OL]. Framingham, MA: IDC, 2011[2021-07-15]. https://documents.pub/document/idc-report-extracting-value-from-chaos.html.
[4]周可, 王桦, 李春花. 云存储技术及其应用[J]. 中兴通讯技术, 2010,16(4): 24-27. DOI: 10.3969/j.issn.1009-6868.2010.04.006.
[5]KUMAR A, KALRA M. Load balancing in cloud data center using modified active monitoring load balancer[C]// Proceedings of the 2016 International Conference on Advances in Computing, Communication, & Automation(ICACCA). Piscataway: IEEE, 2016: 1-5. DOI: 10.1109/ICACCA.2016.7578903.
[6]LIU H, LIU S J, MENG X X, et al. LBVS: a load balancing strategy for virtual storage[C]// Proceedings of the 2010 International Conference on Service Sciences. Piscataway: IEEE, 2010: 257-262. DOI: 10.1109/ICSS.2010.27.
[7]STEFANOV E, SHI E. ObliviStore: high performance oblivious cloud storage[C]// 2013 IEEE Symposium on Security and Privacy. Piscataway: IEEE, 2013:253-267. DOI: 10.1109/SP.2013.25.
[8]TRAN D A, ZHANG T. S-PUT: an EA-based framework for socially aware data partitioning[J]. Computer Networks, 2014, 75(B): 504-518. DOI:10.1016/j.comnet.2014.08.026.
[9]HADA R J, WU H Y, JIN M. Scalable minimum-cost balanced partitioning of large-scale social networks: online and offline solutions[J]. IEEE Transactions on Parallel and Distributed Systems, 2018, 29(7): 1636-1649. DOI: 10.1109/TPDS.2017.2694835.
[10]周经亚, 樊建席, 王进. 支持可扩展的在线社交网络数据放置方法[J]. 中国科学: 信息科学, 2018, 48(3): 329-348.
[11]ZHANG L, LI X J, KHALAJZADEH H, et al. Cost-effective and traffic-optimal data placement strategy for cloud-based online social networks[C]// Proceedings of the 2018 IEEE 22nd International Conference on Computer Supported Cooperative Work in Design(CSCWD). Piscataway: IEEE, 2018: 110-115. DOI: 10.1109/CSCWD.2018.8465343.
[12]何利文, 袁野, 王延松, 等. 基于WFPSO算法的云虚拟机放置策略[J]. 计算机应用研究, 2017, 34(2): 591-594. DOI: 10.3969/j.issn.1001-3695.2017.02.060.
[13]BORU D, KLIAZOVICH D, GRANELLI F, et al. Energy-efficient data replication in cloud computing datacenters[J]. Cluster Computing, 2015, 18(1): 385-402.
[14]SU M M, ZHANG L, WU Y W, et al. Systematic data placement optimization in multi-cloud storage for complex requirements[J]. IEEE Transactions on Computers, 2016, 65(6): 1964-1977. DOI: 10.1109/TC.2015.2462821.
[15]赵涛. 基于数据聚合的无线传感器网络拓扑发现算法[J]. 计算机工程与应用, 2011, 47(3): 17-19,33. DOI: 10.3778/j.issn.1002-8331.2011.03.005.
[16]路红, 廖龙龙. 云计算支持下的协作式数字取证技术[J]. 计算机系统应用, 2015, 24(3): 241-245. DOI: 10.3969/j.issn.1003-3254.2015.03.042.
[17]王禹, 赵跃龙, 侯昉. 分布式存储系统最小带宽再生码研究[J]. 小型微型计算机系统, 2012, 33(8): 1710-1714. DOI: 10.3969/j.issn.1000-1220.2012.08.017.
[18]刘琨, 肖琳, 赵海燕. Hadoop中云数据负载均衡算法的研究及优化[J]. 微电子学与计算机, 2012, 29(9): 18-22. DOI: 10.19304/j.cnki.issn1000-7180.2012.09.005.
[19]NISHIDA H, NGUYEN T. Optimal client-server assignment for internet distributed systems[J]. IEEE Transactions on Parallel and Distributed Systems, 2013, 24(3): 565-575. DOI: 10.1109/ICCCN.2011.6006007.
[20]梁昔明, 秦浩宇, 龙文. 一种求解约束优化问题的遗传算法[J]. 计算机工程, 2010, 36(14): 147-149. DOI: 10.3969/j.issn.1000-3428.2010.14.053.
[21]公茂果, 焦李成, 杨咚咚, 等. 进化多目标优化算法研究[J]. 软件学报, 2009, 20(2): 271-289. DOI: 10.3724/SP.J.1001.2009.03483.
[22]BAI Q H. Analysis of particle swarm optimization algorithm[J]. Computer and Information Science, 2010, 3(1): 180-184. DOI: 10.5539/cis.v3n1p180.
[23]ZHANG Y D, WANG S H, JI G L. A Comprehensive survey on particle swarm optimization algorithm and its applications[J]. Mathematical Problems in Engineering, 2015,2015:931256. DOI: 10.1155/2015/931256.
[24]JIAN Z Y, JIAN Y W. A HDFS dynamic load balancing strategy using improved niche PSO algorithm in cloud storage[J]. International Journal of Autonomous and Adaptive Communications Systems, 2021, 14(1/2): 163-178. DOI:10.1504/IJAACS.2021.10035639.
[25]王启付, 王战江, 王书亭. 一种动态改变惯性权重的粒子群优化算法[J]. 中国机械工程, 2005,16(11): 945-948. DOI: 10.3321/j.issn:1004-132X.2005.11.002.
[1] LI Feiyu, WENG Xiaoxiong, YAO Shushen. Research on the Scaling Law Based on the Travel Time Interval of Passengers’ Group [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(1): 1-9.
[2] WANG Guoyu, HUANG Zhigong, DAI Ming. Fuzzy Control Research for Brushless DC Motor Basedon Improved Particle Swarm Algorithm [J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(2): 21-27.
[3] WANG Jian, HUANG Zhi-gong, XU Jin-hai. Speed Estimation of Permanent Magnet Synchronous Motor Based on Optimized EKF [J]. Journal of Guangxi Normal University(Natural Science Edition), 2014, 32(4): 11-17.
[4] XU Sheng-zhou, XU Xiang-yang, HU Huai-fei, LI Bo. Left Ventricle MRI Segmentation Based on Developed Dynamic Programming [J]. Journal of Guangxi Normal University(Natural Science Edition), 2014, 32(2): 35-41.
[5] LIU Wei, WANG Hao, FANG Bao-fu. RoboCup-Rescue Decision Making Process Based on Binary Particle Swarm Optimization [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(2): 130-133.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] AI Yan, JIA Nan, WANG Yuan, GUO Jing, PAN Dongdong. Review of Statistical Methods and Applications of Genetic Association Analysis for Multiple Traits and Multiple Locus[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 1 -14 .
[2] BAI Defa, XU Xin, WANG Guochang. Review of Generalized Linear Models and Classification for Functional Data[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 15 -29 .
[3] ZENG Qingfan, QIN Yongsong, LI Yufang. Empirical Likelihood Inference for a Class of Spatial Panel Data Models[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 30 -42 .
[4] ZHANG Zhifei, DUAN Qian, LIU Naijia, HUANG Lei. High-dimensional Nonlinear Regression Model Based on JMI[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 43 -56 .
[5] YANG Di, FANG Yangxin, ZHOU Yan. New Category Classification Research Based on MEB and SVM Methods[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 57 -67 .
[6] CHEN Zhongxiu, ZHANG Xingfa, XIONG Qiang, SONG Zefang. Estimation and Test for Asymmetric DAR Model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 68 -81 .
[7] DU Jinfeng, WANG Hairong, LIANG Huan, WANG Dong. Progress of Cross-modal Retrieval Methods Based on Representation Learning[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 1 -12 .
[8] LI Muhang, HAN Meng, CHEN Zhiqiang, WU Hongxin, ZHANG Xilong. Survey of Algorithms Oriented to Complex High Utility Pattern Mining[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 13 -30 .
[9] CHAO Rui, ZHANG Kunli, WANG Jiajia, HU Bin, ZHANG Weicong, HAN Yingjie, ZAN Hongying. Construction of Chinese Multimodal Knowledge Base[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 31 -39 .
[10] LI Zhengguang, CHEN Heng, LIN Hongfei. Identification of Adverse Drug Reaction on Social Media Using Bi-directional Language Model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 40 -48 .