Journal of Guangxi Normal University(Natural Science Edition) ›› 2022, Vol. 40 ›› Issue (3): 141-150.doi: 10.16088/j.issn.1001-6600.2021071003

Previous Articles     Next Articles

Wearable Fall Detection Based on Bi-directional LSTM Neural Network

DUAN Meiling1,2, PAN Julong1,2*   

  1. 1. Key Laboratory of Electromagnetic Wave Information Technology and Metrology of Zhejiang Province (China Jiliang University), Hangzhou Zhejiang 310018, China;
    2. College of Information Engineering, China Jiliang University, Hangzhou Zhejiang 310018, China
  • Received:2021-07-10 Revised:2021-09-10 Online:2022-05-25 Published:2022-05-27

Abstract: Aiming at the injury caused by the elderly who cannot receive timely assistance after falling, the study of fall detection algorithms and timely warnings can reduce the serious harm and consequences of falling of the elderly. In order to improve the accuracy and real-time performance of fall detection, a wearable fall detection algorithm based on bi-directional long and short-term memory neural network is proposed. This algorithm can automatically extract the deeper features from the input fall data (extracted from inertial sensors), and realize the processing from the pre-processed data to the detection result. The algorithm extracts the feature vectors of the acceleration sensor data through the neural network, and performs fall detection using bi-directional long and short-term memory neural network. The model is evaluated with SisFall dataset. The results show that the algorithm achieves high accuracy, while the latency also meets the requirements of real-time detection. The algorithm model has both good practicability and strong generalization ability.

Key words: fall detection, long short-term memory, accelerometer, neural network, feature extraction

CLC Number: 

  • TP181
[1]师昉, 李福亮, 张思佳, 等. 中国老年跌倒研究的现状与对策[J]. 中国康复, 2018, 33(3): 246-248. DOI: 10.3870/zgkf.2018.03.021.
[2]吕艳, 张萌, 姜吴昊, 等. 采用卷积神经网络的老年人跌倒检测系统设计[J]. 浙江大学学报(工学版), 2019, 53(6): 1130-1138. DOI: 10.3785/j.issn.1008-973X.2019.06.012.
[3]DE CILLIS F, DE SIMIO F, GUIDO F, et al.Fall-detection solution for mobile platforms using accelerometer and gyroscope data[C]// Proceedings of the 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Piscataway: IEEE, 2015: 3727-3730. DOI: 10.1109/EMBC.2015.7319203.
[4]李沛峰,冯飞龙,黄淑芬,等.基于Kinect V2的老人跌倒检测系统设计[J].电子设计工程,2021,29(19):112-116.
[5]SUCERQUIA A, LÓPEZ J D, VARGAS F. Two-threshold energy based fall detection using a triaxial accelerometer[C]// Proceedings of the 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Piscataway: IEEE, 2016: 3101-3104. DOI: 10.1109/EMBC.2016.7591385.
[6]BIANCHI F, REDMOND S J, NARAYANAN M R, et al. Barometric pressure and triaxial accelerometry-based falls event detection[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2010, 18(6): 619-627. DOI: 10.1109/TNSRE.2010.2070807.
[7]BOURKE A K, O′BRIEN J V, LYONS G M. Evaluation of a threshold-based tri-axial accelerometer fall detection algorithm[J]. Gait & Posture, 2007, 26(2): 194-199. DOI: 10.1016/j.gaitpost.2006.09.012.
[8]忽丽莎, 王素贞, 陈益强, 等.基于可穿戴设备的跌倒检测算法综述[J]. 浙江大学学报(工学版), 2018, 52(9): 1717-1728. DOI: 10.3785/j.issn.1008-973X.2018.09.012.
[9]NOURY N, FLEURY A, RUMEAU P, et al. Fall detection-principles and methods[C]// Proceedings of the 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Piscataway: IEEE, 2007: 1663-1666. DOI: 10.1109/IEMBS.2007.4352627.
[10]DAVIS K, OWUSU E, BASTANI V, et al. Activity recognition based on inertial sensors for ambient assisted living[C]// Proceedings of the 19th International Conference on Information Fusion. Piscataway: IEEE, 2016: 371-378.
[11]CHEN Y, WANG Z L. A hierarchical method for human concurrent activity recognition using miniature inertial sensors[J]. Sensor Review, 2017, 37(1): 101-109. DOI: 10.1108/SR-05-2016-0085.
[12]TSINGANOS P, SKODRAS A.A smartphone-based fall detection system for the elderly[C]// Proceedings of the 10th International Symposium on Image and Signal Processing and Analysis. Piscataway: IEEE, 2017: 53-58. DOI: 10.1109/ISPA.2017.8073568.
[13]任小奎, 李锋, 程琳. 基于PSO模式搜索的跌倒检测算法研究[J]. 计算机应用研究, 2020, 37(4): 1077-1080.
[14]NWEKE H F, TEH Y W, MUJTABA G, et al. Data fusion and multiple classifier systems for human activity detection and health monitoring: review and open research directions[J]. Information Fusion, 2019, 46: 147-170. DOI: 10.1016/j.inffus.2018.06.002.
[15]SHI J Y, CHEN D S, WANG M. Pre-impact fall detection with CNN-based class activation mapping method[J]. Sensors, 2020, 20(17): 4750. DOI: 10.3390/s20174750.
[16]王晶晶, 黄勇, 陈宝欣, 等. 基于独立循环神经网络的跌倒检测方法[J]. 实验室研究与探索, 2020, 39(7):20-23, 40.
[17]LI H B, SHRESTHA A, HEIDARI H, et al. Bi-LSTM network for multimodal continuous human activity recognition and fall detection[J]. IEEE Sensors Journal, 2020, 20(3): 1191-1201. DOI: 10.1109/JSEN.2019.2946095.
[18]胡双杰, 秦建邦, 郭薇. 基于特征自动提取的跌倒检测算法[J]. 传感技术学报, 2018, 31(12): 1842-1847. DOI: 10.3969/j.issn.1004-1699.2018.012.011.
[19]HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. DOI: 10.1162/neco.1997.9.8.1735.
[20]ISTIAKE SUNNY M A, MASWOOD M M S, ALHARBI A G. Deep learning-based stock price prediction using LSTM and bi-directional LSTM model[C]// Proceedings of the 2nd Novel Intelligent and Leading Emerging Sciences Conference. Piscataway: IEEE, 2020: 87-92. DOI: 10.1109/NILES50944.2020.9257950.
[21]SUCERQUIA A, LÓPEZ J D, VARGAS-BONILLA J F. SisFall: a fall and movement dataset[J]. Sensors, 2017, 17(1): 198. DOI: 10.3390/s17010198.
[22]HUSSAIN F, HUSSAIN F, EHATISHAM-UL-HAQ M, et al. Activity-aware fall detection and recognition based on wearable sensors[J]. IEEE Sensors Journal, 2019, 19(12): 4528-4536. DOI: 10.1109/JSEN.2019.2898891.
[23]CASILARI E, LORA-RIVERA R, GARCÍA-LAGOS F. A study on the application of convolutional neural networks to fall detection evaluated with multiple public datasets[J]. Sensors, 2020, 20(5): 1466. DOI: 10.3390/s20051466.
[24]MUSCI M, DE MARTINI D, BLAGO N, et al. Online fall detection using recurrent neural networks on smart wearable devices[J]. IEEE Transactions on Emerging Topics in Computing, 2021,9(3):1276-1289. DOI: 10.1109/TETC.2020.3027454.
[25]LUNA-PEREJÓN F, DOMÍNGUEZ-MORALES M J, CIVIT-BALCELLS A. Wearable fall detector using recurrent neural networks[J]. Sensors, 2019, 19(22): 4885. DOI: 10.3390/s19224885.
[26]WARDEN P, SITUNAYAKE D. TinyML: machine learning with tensorflow lite on arduino and ultya-low-power microcontrollers[M]. Sebastopol: O’Reilly Media, 2019.
[1] ZHOU Shengkai, FU Lizhen, SONG Wen’ai. Semantic Similarity Computing Model for Short Text Based on Deep Learning [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 49-56.
[2] HU Qiang, LIU Qian, ZHOU Hangxia. Study on Phishing Website Detection Based on Improved Stacking Strategy [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 132-140.
[3] KONG Yayu, LU Yujie, SUN Zhongtian, XIAO Jingxian, HOU Haochen, CHEN Tingwei. Research on Graph Neural Network Recommendation Algorithms for Reinforcing Current Interest [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 151-160.
[4] ZHU Enwen, ZHU Anqi, WANG Jiedan, LIU Yujiao. Research on Wind Power Short-term Prediction Based on EEMD-GA-BP Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 166-174.
[5] TIAN Sheng, LI Chengwei, HUANG Wei, WANG Lei. Forecasting Method of Highway Freight Volume Based on GC-rBPNN Model during COVID-19 Epidemic [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(6): 24-32.
[6] LI Bing, LI Zhi, YANG Yilong. Classification of Non-Functional Software Requirements Using Word Embeddings and Long Short-Term Memory [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(5): 110-121.
[7] CHEN Wenkang, LU Shenglian, LIU Binghao, LI Guo, LIU Xiaoyu, CHEN Ming. Real-time Citrus Recognition under Orchard Environment by Improved YOLOv4 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(5): 134-146.
[8] YANG Zhou, FAN Yixing, ZHU Xiaofei, GUO Jiafeng, WANG Yue. Survey on Modeling Factors of Neural Information Retrieval Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(2): 1-12.
[9] DENG Wenxuan, YANG Hang, JIN Ting. A Dimensionality-reduction Method Based on Attention Mechanismon Image Classification [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(2): 32-40.
[10] MA Ling, LUO Xiaoshu, JIANG Pinqun. An Ink-jetted Code Character Recognition MethodBased on Probabilistic Neural Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(4): 32-41.
[11] LI Yadai, WEI Duqu. Research on Firing Behavior of Magnetic Field Coupled Memristive Neural Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(3): 19-24.
[12] YAN Hao, XU Hongbo, SHEN Yinghan, CHENG Xueqi. Research on Open Chinese Event Detection [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(2): 64-71.
[13] LIU Xin, LUO Xiaoshu, ZHAO Shulin. Active Disturbance Rejection Control of Three-AxisStabilized Platform Based on BP Neural Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(2): 115-120.
[14] TAN Anjie, WEI Duqu, QIN Yinghua. Research on Discharge Mode and Synchronization Behavior of Electromagnetic Field Coupled Memristor Neural Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(1): 107-113.
[15] LUO Lan, ZHOU Nan, SI Jie. New Delay Partition Method for Robust Stability of Uncertain Cellular Neural Networks with Time-Varying Delays [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 45-52.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] AI Yan, JIA Nan, WANG Yuan, GUO Jing, PAN Dongdong. Review of Statistical Methods and Applications of Genetic Association Analysis for Multiple Traits and Multiple Locus[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 1 -14 .
[2] BAI Defa, XU Xin, WANG Guochang. Review of Generalized Linear Models and Classification for Functional Data[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 15 -29 .
[3] ZENG Qingfan, QIN Yongsong, LI Yufang. Empirical Likelihood Inference for a Class of Spatial Panel Data Models[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 30 -42 .
[4] ZHANG Zhifei, DUAN Qian, LIU Naijia, HUANG Lei. High-dimensional Nonlinear Regression Model Based on JMI[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 43 -56 .
[5] YANG Di, FANG Yangxin, ZHOU Yan. New Category Classification Research Based on MEB and SVM Methods[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 57 -67 .
[6] CHEN Zhongxiu, ZHANG Xingfa, XIONG Qiang, SONG Zefang. Estimation and Test for Asymmetric DAR Model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 68 -81 .
[7] DU Jinfeng, WANG Hairong, LIANG Huan, WANG Dong. Progress of Cross-modal Retrieval Methods Based on Representation Learning[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 1 -12 .
[8] LI Muhang, HAN Meng, CHEN Zhiqiang, WU Hongxin, ZHANG Xilong. Survey of Algorithms Oriented to Complex High Utility Pattern Mining[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 13 -30 .
[9] CHAO Rui, ZHANG Kunli, WANG Jiajia, HU Bin, ZHANG Weicong, HAN Yingjie, ZAN Hongying. Construction of Chinese Multimodal Knowledge Base[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 31 -39 .
[10] LI Zhengguang, CHEN Heng, LIN Hongfei. Identification of Adverse Drug Reaction on Social Media Using Bi-directional Language Model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 40 -48 .