Journal of Guangxi Normal University(Natural Science Edition) ›› 2022, Vol. 40 ›› Issue (2): 191-199.doi: 10.16088/j.issn.1001-6600.2021022202

Previous Articles     Next Articles

Antitumor Effect of Normal Mice Derived CD4+CD25+ Cells in Mice Lung Cancer Model

ZHOU Jun1,2,3, CHEN Shuman1,2,3, XING Bing1, CHEN Yajing1,2,3, LI Yinling1,2,3, HE Liu1,2,3, ZHOU Zuping1,2,3, PU Shiming1,2,3*   

  1. 1. College of Life Sciences, Guangxi Normal University, Guilin Guangxi 541006, China;
    2. Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology (Guangxi Normal University), Guilin Guangxi 541004, China;
    3. Biomedical Research Center of Guangxi Normal University, Guangxi Normal University, Guilin Guangxi 541004
  • Received:2021-02-22 Revised:2021-04-26 Published:2022-05-31

Abstract: CD4+CD25+ cells are a group of T cells with immunosuppressive activity, which are also known as regulatory T cells (Tregs). Tregs suppress T-cell activation and promote tumorigenesis and progression in tumorigenesis, whereas the immunomodulatory effects produced by Tregs of normal physiological origin upon return transfusion are unknown. To investigate the immunomodulatory effect of Tregs under normal physiological conditions, the effects of tumor growth and T-cell production and lung lesions were compared in normal and tumor-burdened mice of CD4+CD25+ cell transplantation by mouse lung cancer model and cell transplantation. The results showed that mice transplanted with normal CD4+CD25+ cells had longer survival, slower tumor growth, increased T-cell and their subpopulations in the peripheral blood and spleen, and no significant lesions in the lungs compared with the control group, while mice transplanted with tumor-bearing CD4+CD25+ cells had shorter survival, faster tumor growth, significantly decreased T-cell and their subpopulations in the peripheral blood and spleen, and more severe diffuse focal lesions in the lungs. These results indicated that normal-derived CD4+CD25+ cells had antitumor effects in the mouse lung cancer model.

Key words: lung cancer, CD4+CD25+ cells, cell transplants, tumor progression, immune regulation

CLC Number: 

  • R734.2
[1] ROMASZKO A M, DOBOSZYN′SKA A. Multiple primary lung cancer: A literature review[J]. Advances in Clinical and Experimental Medicine, 2018, 27(5): 725-730. DOI: 10.17219/acem/68631.
[2] NASIM F, SABATH B F, EAPEN G A. Lung cancer[J]. The Medical Clinics of North America, 2019, 103(3): 463-473. DOI: 10.1016/j.mcna.2018.12.006.
[3] MAO Y S, YANG D, HE J, et al. Epidemiology of lung cancer[J]. Surgical Oncology Clinics of North America, 2016, 25(3): 439-445. DOI: 10.1016/j.soc.2016.02.001.
[4] RODRIGUEZ-CANALES J, PARRA-CUENTAS E, WISTUBA I I. Diagnosis and molecular classification of lung cancer[J]. Cancer Treatment and Research, 2016, 170: 25-46. DOI: 10.1007/978-3-319-40389-2_2.
[5] WU T, DAI Y. Tumor microenvironment and therapeuticresponse[J]. Cancer Letters, 2017, 387: 61-68. DOI: 10.1016/j.canlet.2016.01.043.
[6] ARNETH B. Tumor Microenvironment[J]. Medicina, 2019, 56(1): 15. DOI: 10.3390/medicina56010015.
[7] GALDIERO M R, BONAVITA E, BARAJON I, et al. Tumor associated macrophages and neutrophils in cancer[J]. Immunobiology, 2013, 218(11): 1402-1410. DOI: 10.1016/j.imbio.2013.06.003.
[8] KALINSKI P, TALMADGE J E. Tumor immuno-environment in cancer progression and therapy[J]. Advances in Experimental Medicine and Biology, 2017, 1036: 1-18. DOI: 10.1007/978-3-319-67577-0_1.
[9] CHEN X, DU Y, HUANG Z. CD4+CD25+ treg derived from hepatocellular carcinoma mice inhibits tumor immunity[J]. Immunology Letters, 2012, 148(1): 83-89. DOI: 10.1016/j.imlet.2012.09.002.
[10] SOJKA D K, HUGHSON A, FOWELL D J. CTLA-4 is required byCD4+CD25+ Treg to control CD4+ T-cell lymphopenia-induced proliferation[J]. European Journal of Immunology, 2009, 39(6): 1544-1551. DOI: 10.1002/eji.200838603.
[11] FUJIO K, YAMAMOTO K, OKAMURA T, et al. Overview of LAG-3-Expressing, IL-10-producing regulatory T cells[J]. Current Topics in Microbiology and Immunology, 2017, 410: 29-45. DOI: 10.1007/82_2017_59.
[12] COLLISON L W, WORKMAN C J, KUO T T, et al. The inhibitory cytokine IL-35 contributes to regulatory T-cell function[J]. Nature, 2007, 450(7169): 566-569. DOI: 10.1038/nature06306.
[13] LI X L, YANG A M, HUANG H, et al. Induction of type 2 T helper cell allergen tolerance by IL-10-differentiated regulatory dendritic cells[J]. American Journal of Respiratory Cell and Molecular Biology, 2010, 42(2): 190-199. DOI: 10.1165/rcmb.2009-0023OC.
[14] JARNICKI A G, LYSAGHT J, TODRYK S, et al. Suppression of antitumor immunity by IL-10 and TGF-beta-producing T cells infiltrating the growing tumor: influence of tumor environment on the induction of CD4+ and CD8+ regulatory T cells[J]. Journal of Immunology, 2006, 177(2): 896-904. DOI: 10.4049/jimmunol.177.2.896.
[15] VANDENBARK A A, OFFNER H. Critical evaluation of regulatory T cells in autoimmunity: are the most potent regulatory specificities being ignored?[J]. Immunology, 2008, 125(1): 1-13. DOI: 10.1111/j.1365-2567.2008.02900.x.
[16] 肖捷, 杨丽萍, 肖健, 等. CD4+CD25+调节性T细胞在AIHA患者外周血中的表达及临床意义[J]. 中国医药科学, 2020, 10(16): 199-202.
[17] 王宇, 周建松, 许敏. CD4+CD25+Foxp3+调节性T细胞与肺癌患者预后的关系[J]. 热带医学杂志, 2021, 21(1): 61-65.
[18] WING K, SURI-PAYER E, RUDIN A. CD4+CD25+-regulatory T cells from mouse to man[J]. Scandinavian Journal of Immunology, 2005, 62(1): 1-15. DOI: 10.1111/j.1365-3083.2005.01634.x.
[19] ZHANG J H, DENG J H, YAO X L, et al. CD4(+)CD25(+) tregs as dependent factor in the course of bleomycin-induced pulmonary fibrosis in mice[J]. Experimental Cell Research, 2020, 386(1): 111700. DOI: 10.1016/j.yexcr.2019.111700.
[20] SHIM J, LEE E S, PARK S, et al. CD4(+)CD25(+) regulatory T cells ameliorate Behcet's disease-like symptoms in a mouse model[J]. Cytotherapy, 2011, 13(7): 835-847. DOI: 10.3109/14653249.2011.571245.
[21] 周奕辰, 王金岩. CD4+CD25+Treg细胞在小鼠Lewis肺癌生长及转移中的作用[J]. 中国免疫学杂志, 2019, 35(14): 1712-1716.
[22] CHAI J G. Cancer vaccination reprograms regulatory T cells into helper CD4 T cells to promote antitumor CD8 T-cell responses[J]. Immunotherapy, 2011, 3(5): 601-604. DOI: 10.2217/imt.11.22.
[23] SHARMA M D, HOU D Y, BABAN B, et al. Reprogrammed Foxp3+ regulatory T cells provide essential help to support cross-presentation and CD8+ T cell priming in naive mice[J]. Immunity, 2010, 33(6): 942-954. DOI: 10.1016/j.immuni.2010.11.022.
[1] LI Yinling, ZHOU Jing, CHEN Ying, CHEN Qiaoyuan, LIN Wanhua. Study on the Abnormal Expression of Sdr9c7 Gene in Erythrocytes of Tumor-bearing Mice [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(6): 147-153.
[2] MEI Han-bing, WANG Wei, YAO Xue, CHENG Lian-biao, HUANG Jin. Inhibitory Activity and Mechanism of Hsp90 Inhibitor Cynaroside Against Non-small Cell Lung Cancer in Vitro [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(3): 91-97.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HU Jinming, WEI Duqu. Hybrid Projective Synchronization of Fractional-order PMSM with Different Orders[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 1 -8 .
[2] WU Kangkang, ZHOU Peng, LU Ye, JIANG Dan, YAN Jianghong, QIAN Zhengcheng, GONG Chuang. FIR Equalizer Based on Mini-batch Gradient Descent Method[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 9 -20 .
[3] LIU Dong, ZHOU Li, ZHENG Xiaoliang. A Very Short-term Electric Load Forecasting Based on SA-DBN[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 21 -33 .
[4] ZHANG Weibin, WU Jun, YI Jianbing. Research on Feature Fusion Controlled Items Detection Algorithm Based on RFB Network[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 34 -46 .
[5] WANG Jinyan, HU Chun, GAO Jian. An OBDD Construction Method for Knowledge Compilation[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 47 -54 .
[6] LU Miao, HE Dengxu, QU Liangdong. Grey Wolf Optimization Algorithm Based on Elite Learning for Nonlinear Parameters[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 55 -67 .
[7] LI Lili, ZHANG Xingfa, LI Yuan, DENG Chunliang. Daily GARCH Model Estimation Using High Frequency Data[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 68 -78 .
[8] LI Songtao, LI Qunhong, ZHANG Wen. Co-dimension-two Grazing Bifurcation and Chaos Control of Three-degree-of-freedom Vibro-impact Systems[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 79 -92 .
[9] ZHAO Hongtao, LIU Zhiwei. Decompositions of λ-fold Complete Bipartite 3-uniform Hypergraphs λK(3)n,n into Hypergraph Triangular Bipyramid[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 93 -98 .
[10] LI Meng, CAO Qingxian, HU Baoqing. Spatial-temporal Analysis of Continental Coastline Migration from 1960 to 2018 in Guangxi, China[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 99 -108 .