Journal of Guangxi Normal University(Natural Science Edition) ›› 2021, Vol. 39 ›› Issue (3): 54-61.doi: 10.16088/j.issn.1001-6600.2019112108
Previous Articles Next Articles
GE Yingying, LI Mei*
CLC Number:
[1]王晓雪,栗永安. 一类带有庇护区的单种群生物模型的动力学分析[J]. 齐齐哈尔大学学报(自然科学版), 2011, 27(2): 55-60. [2]莫细才, 焦建军, 李利梅. 一类新的具脉冲出生单种群动力学模型分析[J]. 鞍山师范学院学报,2011, 13(4):7-10. [3]韦东, 祖力, 柳杨. 带马氏转换的单种群随机反应扩散模型的长时渐近性质[J]. 海南师范大学学报(自然科学版), 2018, 31(2): 196-205. [4]罗颜涛, 张龙, 滕志东. 一类间歇时滞扩散的概周期捕食系统的持久性[J]. 广西师范大学学报(自然科学版), 2017, 35(2): 50-57. [5]黄开娇, 肖飞雁. 一类带 Lévy 噪声的随机捕食-被捕食系统[J]. 广西师范大学学报(自然科学版), 2017, 35(2): 66-72. [6]李传华, 冯春华. 一类二阶常p-Laplace系统周期解的存在性[J]. 广西师范大学学报(自然科学版), 2011, 29(3): 28-32. [7]冯光庭, 金星任. 一类捕食与被捕食系统的最优可持续收获策略[J]. 湖北第二师范学院学报, 2012, 29(2): 5-6. [8]FAN M, WANG K. Optimal harvesting policy for single population with periodic coefficients[J]. Mathematical Biosciences, 1998, 152(2): 165-177. [9]BAI L, WANG K. Gilpin-Ayala model with spatial diffusion and its optimal harvesting policy[J]. Applied Mathematics and Computation, 2005, 171(1): 531-546. [10]王培光. 时标上脉冲动力方程周期边值问题的拟线性化方法[J]. 工程数学学报, 2011, 28(4): 532-536. [11]吴春晨. 一类拟线性抛物型方程组的可解性[J]. 莆田学院学报, 2012, 19(2): 25-27. [12]MOUSSAOUI A, BOUGUIMA S M. A prey-predator interaction under fuctuating level water[J]. Mathematical Methods in the Applied Sciences, 2014, 38(1):123-137. [13]ZHOU L, FU Y P. Existence and stability of periodic quasisolutions in nonlinear parabolic system with discrete delay[J]. Journal of Mathematical Analysis & Applications, 2000, 250(1): 139-161. [14]林支桂. 数学生态学导引[M]. 北京: 科学出版社, 2013: 62. |
[1] | YAN Sha. Global Existence of Solutions for a Three Species Predator-prey Model with Cross-diffusion [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(2): 125-131. |
[2] | WANG Yue, YE Hongyan, LEI Jun, SUO Hongmin. Infinitely Many Classical Solutions for Kirchhoff Type Problem with Linear Term [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(6): 65-73. |
[3] | ZHANG Yijin. Random Dynamics for Stochastic Delay Lattice Systems in Xρ Space [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(3): 106-110. |
[4] | ZHOU Jian-jun, HONG Bao-jian, LU Dian-chen. New Jacobi Elliptic Functions Solutions of the Schrödinger-Boussinesq Equations [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(1): 11-15. |
[5] | ZHANG Jie, LI Xiaojun. Existence of Uniform Random Attractor for NonautonomousStochastic Reaction-diffusion Equations on Unbounded Domains [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(2): 134-143. |
[6] | JIANG Yingxing, HUANG Wennian. Ground State Solutions for the NonlinearSchrödinger-Maxwell Equations [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(4): 59-66. |
[7] | MA Yun-ling, GENG Xian-guo. Explicit Solutions of Two (2+1)-dimensional Soliton Equations [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(2): 45-49. |
|