Journal of Guangxi Normal University(Natural Science Edition) ›› 2021, Vol. 39 ›› Issue (2): 101-111.doi: 10.16088/j.issn.1001-6600.2019100301
Previous Articles Next Articles
WEN Xiaomei, DENG Guohe*
CLC Number:
[1] GESKE R.The valuation of compound options[J].Journal of Financial Economics,1979,7(1):63-81.DOI: 10.1016/0304-405X(79)90022-9. [2] SELBY M J P,HODGES S D.On the evaluation of compound options[J].Management Science,1987,33(3):347-355. [3] BURASCHI A,DUMAS B.The forward valuations of compound option[J].Journal of Derivatives,2001,9(1):8-17.DOI: 10.3905/jod.2001.319165. [4] 李荣华,戴永红,常秦.参数依赖于时间的复合期权[J].工程数学学报,2005,25(4):692-696. [5] GUKHAL C R.The compound option approach to American options on jump-diffusions[J].Journal of Economic Dynamics and Control,2004,28(10):2055-2074.DOI: 10.1016/j.jedc.2003.06.002. [6] LIU Y H,JIANG I M,HSUA W T.Compound option pricing under a double exponential jump diffusion model[J].North American Journal of Economics and Finance,2018,43:30-53.DOI: 10.1016/j.najef.2017.10.002. [7] GRIEBSCH S A.The evaluation of European compound option prices under stochastic volatility using Fourier transform techniques[J].Review of Derivatives Research,2013,16(2):135-165.DOI: 10.1007/s11147-012-9083-z. [8] CHIARELLA C,GRIEBSCH S,KANG B.A comparative study on time-efficient methods to price compound options in the Heston model[J].Computers and Mathematics with Applications,2014,67(6):1254-1270.DOI:10.1016/j.camwa.2014.01.008. [9] FOUQUE J P,HAN C H.Evaluation of compound options using perturbation approximation[J].Journal of Computational Finance,2005,9(1):41-61.DOI: 10.21314/JCF.2005.125. [10] SCOTT L O.Pricing stock options in a jump-diffusion model with stochastic volatility and interest rates:applications of Fourier inversion methods[J].Mathematical Finance,1997,7(4):413-426.DOI: 10.1111/1467-9965.00039. [11] DUFFIE D,PAN J,SINGLETON K J.Transform analysis and asset pricing for affine jump-diffusions[J].Econometrica,2000,68(6):1343-1376. [12] 黄国安,邓国和.随机波动率下跳扩散模型的远期生效期权[J].广西师范大学学报(自然科学版),2009,27(3):35-39. [13] 邓国和.随机波动率跳跃扩散模型下复合期权定价[J].数理统计与管理,2015,34(5):910-922. [14] 苏甜.双因素随机波动率跳扩散模型下复合期权定价[D].桂林:广西师范大学,2017. [15] HEYNEN R C,KAT H M.Pricing and hedging power options[J].Financial Engineering and the Japanese Markets,1996,3(3):253-261.DOI: 10.1007/BF02425804. [16] TOMPKINS R G.Power options:hedging nonlinear risks[J].Journal of Risk,2000,2(2):29-45.DOI: 10.21314/JOR.2000.022. [17] MACOVSCHI S,QUITTARD-PINON F.On the pricing of power and other polynomial options[J].The Journal of Derivatives,2006,13(4):61-71.DOI: 10.3905/jod.2006.635421. [18] ESSER A.General valuation principles for arbitrary payoffs and applications to power options under stochastic volatility[J].Financial Markets and Portfolio Management,2003,17(3):351-372.DOI: 10.1007/s11408-003-0305-0. [19] KIM J,KIM B,MOON K S,et al.Valuation of power options under Heston’s stochastic volatility model[J].Journal of Economic Dynamics and Control,2012,36(11):1796-1813.DOI: 10.1016/j.jedc.2012.05.005. [20] 杨向群,吴奕东.带跳的幂型支付欧式期权定价[J].广西师范大学学报(自然科学版),2007,25(3):56-59. [21] 符双,薛红.分数跳-扩散O-U过程下幂型期权定价[J].哈尔滨商业大学学报(自然科学版),2014,30(6):758-762. [22] XUE G M,DENG G H.Pricing forward-starting power asian options with floating strike price[J].Mathematica Applicata,2017,30(4):916-926. [23] CHERNOV M,RONALD GALLLANT A,GHYSELS E,et al.Alternative models for stock price dynamics[J].Journal of Econometrics,2003,116(1/2):225-257.DOI:10.1016/S0304-4076(03)00108-8. [24] CARRP,WU L.Stochastic skew in currency options[J].Journal of Financial Economics,2007,86(1):213-247. [25] FONSECA J D,GRASSELLI M,TEBALDI C.A multi-factor volatility Heston model[J].Quantitative Finance,2008,8(6):591-604.DOI: 10.1080/14697680701668418. [26] ERAKER B,JOHANNES M,POLSON N.The impact of jumps in volatility and returns[J].The Journal of Finance,2003,58(3):1269-1300.DOI: 10.1111/1540-6261.00566. [27] AHLIP R,PARK L A F,PRODAN A.Semi-analytical option pricing under double Heston jump-diffusion hybrid model[J].Journal of Mathematical Sciences and Modelling,2018,1(3):138-152.DOI: 10.33187/jmsm.432019. [28] MEHRDOUST F,SABER N.Pricing arithmetic Asian option under a two-factor stochastic volatility model with jumps[J].Journal of Statistical Computation and Simulation,2015,85(18):3811-3819.DOI: 10.1080/00949655.2015.1046072. [29] 邓国和.双跳跃仿射扩散模型的美式看跌期权定价[J].系统科学与数学,2017,37(7):1646-1663. |
[1] | WEN Yuzhuo, TANG Shengda, DENG Guohe. Analysis of the Ruin Time of Threshold Dividend Strategy Risk Model under Stochastic Environment [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 56-62. |
[2] | WEN Yuzhuo, TANG Shengda, DENG Guohe. Asmussen’s Approach to Ruin Time of the Dependent Multi-typeRisk Processes in a Stochastic Environment [J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(3): 68-73. |
[3] | WANG Jiaqin, DENG Guohe. Pricing of Interest Rate Derivatives Based on Affine Jump Diffusion Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(3): 74-85. |
[4] | XU Lei, DENG Guo-he. Valuation on European Lookback Option under Stochastic Volatility Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(3): 79-90. |
[5] | DENG Guo-he. Pricing European Chooser Options in Heston's Stochastic Volatility Model and Hedging Strategies [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(3): 36-43. |
[6] | TANG Sheng-da, QIN Yong-song. Risk Process Driven by Markovian Environment Process [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(1): 35-39. |
[7] | TANG Sheng-da, QIN Yong-song. Gerber-Shiu Function of MAP Risk Process Perturbedby Diffusion [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(3): 23-27. |
|