Journal of Guangxi Normal University(Natural Science Edition) ›› 2020, Vol. 38 ›› Issue (6): 102-113.doi: 10.16088/j.issn.1001-6600.2020.06.012
Previous Articles Next Articles
GUO Yongli1,2*, QUAN Xiqiang1, WU Qing1
CLC Number:
[1] PAVLOVSKIY I, SELLE B. Integrating hydrogeochemical, hydrogeological, and environmental tracer data to understand groundwater flow for a karstified aquifer system[J]. Ground Water, 2015, 53(1): 156-165. [2] 韩行瑞. 岩溶水文地质学[M]. 北京: 科学出版社, 2015: 16-20. [3] 潘晓东, 尹学灵, 唐健生, 等. 寨底地下河系统脆弱性评价指标体系及方法[J]. 广西师范大学学报(自然科学版), 2014, 32(3):168-174. [4] 袁道先, 蒋勇军, 沈立成, 等. 现代岩溶学[M]. 北京: 科学出版社, 2016: 104-105. [5] 吴庆, 郭永丽, 翟远征, 等. 大武水源地地下水中NO3-N动态变化特征及其影响因素分析[J]. 水文, 2017, 37(6): 68-73. [6] 郭永丽, 吴庆, 翟远征, 等. 某水源地地下水中石油类有机污染特征[J]. 人民黄河, 2018, 40(10): 61-65, 81. [7] 刘姝媛. 大武地下水水源地污染风险动态评价研究[D]. 北京: 北京师范大学, 2016. [8] 江梅, 邹兰, 李晓倩, 等. 我国挥发性有机物定义和控制指标的探讨[J]. 环境科学, 2015, 36(9): 3522-3532. [9] LI Z K, CHANG F Y, SHI P, et al. Occurrence and potential human health risks of semi-volatile organic compounds in drinking water from cities along the Chinese coastland of the Yellow Sea[J]. Chemosphere, 2018, 206(17): 655-662. [10] LIU B H, CHEN L, HUANG L X, et al. Distribution of volatile organic compounds (VOCs) in surface water, soil, and groundwater within a chemical industry park in Eastern China[J]. Water Science and Technology, 2015, 71(2): 259-267. [11] HUANG B B, LEI C, WEI C H, et al. Chlorinated volatile organic compounds (Cl-VOCs) in environment-sources, potential human health impacts, and current remediation technologies[J]. Environment International, 2014, 71(10): 118-138. [12] 尚宇宁. 淄博市大武水源地岩溶水水位多年动态变化分析研究[J]. 山东国土资源, 2013, 29(9):44-47. [13] 李沫蕊, 王韦舒, 任姝娟, 等. 运用改进综合评分法筛选典型污染物的研究:以大武水源地地下水典型污染物筛选为例[J]. 环境污染与防治, 2014, 36(11): 72-77. [14] GUO Y L, ZHAI Y Z, WU Q, et al. Proposed APLIE method for groundwater vulnerability assessment in karst-phreatic aquifer, Shandong Province, China: a case study[J]. Environmental Earth Sciences, 2016, 75(2):112. [15] GUO Y L, WU Q, LI C S, et al. Application of the risk-based early warning method in a fracture-karst water source, North China[J]. Water Environment Research, 2018, 90(3): 206-219. [16] US EPA. Risk Assessment guidance for superfund: volume:Ⅰ human health evaluation manual[R]. Washington DC: Office of Superfund Remediation and Technology Innovation, U.S. Environmental Protection Agency, 2004. [17] US EPA. Chemical-specific inputs for EPA's 2015 final updated human health ambient water quality criteria[R/OL]. Washington DC: US EPA, 2015[2019-10-15]. http://www.epa.govwqchumanhealth-water-quality-criteria. [18] 梁小明, 张嘉妮, 陈小方, 等. 我国人为源挥发性有机物反应性排放清单[J]. 环境科学, 2017, 38(3): 845-854. [19] 昌盛, 赵兴茹, 刘琰, 等. 滹沱河冲洪积扇地下水中挥发性有机物的分布特征与健康风险[J]. 环境科学研究, 2016, 29(6): 854-862. [20] LAN F N, QIN X Q, JIANG Z C, et al. Influences of land use/land cover on hydrogeochemical indexes of karst groundwater in the Dagouhe Basin, Southwest China[J]. Clean—Soil Air Water, 2015, 43(5): 683-689. [21] JIANG Y J, CAO M, YUAN D X, et al. Hydrogeological characterization and environmental effects of the deteriorating urban karst groundwater in a karst trough valley: Nanshan, SW China[J]. Hydrogeology Journal, 2018, 26(5): 1487-1497. [22] CATER J M, MORAN M J, ZOGORSKI J S, et al. Factors associated with sources, transport, and fate of chloroform and three other trihalomethanes in untreated groundwater used for drinking water[J]. Environmental Science and Technology, 2012, 46(15): 8189-8197. [23] MARIĆ N, MATIĆ I, PAPIĆ P, et al. Natural attenuation of petroleum hydrocarbons—a study of biodegradation effects in groundwater(Vitanovac, Serbia)[J]. Environmental Monitoring and Assessment, 2018, 190(2): 89. [24] APPELO C A J, POSTMA D. Geochemistry, groundwater and pollution[M]. Leiden: Balkema Press, 2005. [25] SQUILLACE P J, MORAN M J. Factors Associated with sources, transport, and fate of volatile organic compounds and their mixtures in aquifers of the United States[J]. Environmental Science and Technology, 2007, 41(7): 2123-2130. [26] 国家标准化管理委员会. 生活饮用水卫生标准: GB 5749-2006[S]. 北京: 中国标准出版社, 2007. [27] World Health Organization. Guidelines for drinking-water quality[R]. Genera: WHO Press, 2011. [28] 李丽, 许秋瑾, 梁存珍, 等. 江苏某县乡镇饮用水中挥发性有机物的检测及其风险评价[J]. 中国环境监测, 2013, 29(4): 1-4. [29] 张春艳, 高柏, 郭亚丹, 等. 鄱阳湖区域地下水有机污染物特征与风险评价[J]. 生态毒理学报, 2016, 11(2): 524-530. [30] HAN L, QIAN L B, YAN J C, et al. A comparison of risk modeling tools and a case study for human health risk assessment of volatile organic compounds in contaminated groundwater[J]. Environmental Science and Pollution Research, 2016, 23(2): 1234-1245. |
[1] | PENG Limei, ZHAO Li, ZHOU Wu, HU Yueming. Risk Assessment of Heavy Metals in Cultivated Land in Conghua District of Guangzhou City, China [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(5): 118-129. |
[2] | XIE Hai,CHEN Liang,HUANG Haiyan,HE Nan,LIU Haiyang,WU Zhengjun. Research on Movement Pattern and the Influencing Factors of Shinisaurus crocodilurus in the Luokeng Nature Reserve, Guangdong, China [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(4): 106-113. |
[3] | LI Jianhong, MENG Xinyuan, ZHAI Luxin, WANG Yue. Analysis of the Trend of Extreme Continuous Precipitation underClimate Change Condition in Guangxi,China, from 1951 to 2006 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(1): 187-196. |
[4] | SHEN Li-bing, HUANG Da-rong, CHU Xiao-yan, ZHAO Ling. Influencing Factors of Road Network's Vulnerability Based on Three-dem Arcation Analytic Hierarchy Process [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(4): 54-59. |
|