Journal of Guangxi Normal University(Natural Science Edition) ›› 2020, Vol. 38 ›› Issue (6): 88-101.doi: 10.16088/j.issn.1001-6600.2020.06.011

Previous Articles     Next Articles

Immobilization Method of Lipase Based on Carboxyl Carrier LX-1000IDA

ZHU Heng1,2,3,4, ZHANG Jifu5, ZHANG Yun1,2,3, HU Yunfeng1,2,3*   

  1. 1. South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou Guangdong 510301, China;
    2. CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (South China Sea Institute of Oceanology, Chinese Academy of Sciences), Guangzhou Guangdong 510301, China;
    3. Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou),Guangzhou Guangdong 511458, China;
    4. University of Chinese Academy of Sciences, Beijing 100049, China;
    5. Guangdong Provincial Hospital of Chinese Medicine, Guangzhou Guangdong 510120, China
  • Received:2019-09-23 Published:2020-11-30

Abstract: This paper used carbon diamine EDC as the activator of the carboxyl carrier LX-1000IDA, and the marine lipase was fixed on the carboxyl carrier through the surface amino resin of lipase to generate the fixed marine lipase IDA-LIPASE. To achieve the best immobilization effect, conditions such as the order of addition of carriers, enzymes and crosslinking agents, buffer concentration, temperature, pH, carrier quantity, time and EDC concentration were optimized and screened. After using single-factor experiment, Plackett Burman experiment, and orthogonal experiment, the optimized conditions of immobilization were determined as follows: pH 4.5, carrier amount 0.2 g, time 6h, temperature 25 ℃, 0.6% EDC, The immobilized enzyme was prepared with enzyme activity of 114 U/g. After 10 times of expanded immobilization, the activity of the immobilized IDA- LIPASE reached 210 U/g. After comparing the prepared immobilized lipase with free enzyme, it was found that: the optimal reaction temperature increased by 10 ℃, the optimal reaction pH shifted 0.5 to the alkaline direction, and the reusability was better. About 40% of the enzyme activity was still left after the 7th usage of immobilized catalysis, the immobilize lipase exhibited excellent thermal stability. In addition, the immobilized lipase remained 84.6% enzyme activity after preservation at 4 ℃ for 30 d and exhibited good storage stability. Compared with free enzyme, the immobilized enzyme IDA-LIPASE was more suitable for industrial production environment and possessed the potential and value of practical production.

Key words: marine lipase, immobilization, carboxyl carrier, 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride, enzymatic property

CLC Number: 

  • Q814.2
[1] BASHEER S M, CHELLAPPAN S, BEENA P S, et al. Lipase from marine Aspergillus awamori BTMFW032: Production, partial purification and application in oil effluent treatment[J]. New Biotechnology, 2011, 28(6):627-638. DOI:10.1016/j.nbt.2011.04.007.
[2] JOSEPH D, CHAKRABORTY K. Production and biotechnological application of extracellular alkalophilic lipase from marine macroalga-associated shewanella algae to produce enriched C20-22 n-3 polyunsaturated fatty acid concentrate[J]. Applied Biochemistry Biotechnology, 2017, 185(1): 55-71. DOI: 10.1007/s12010-017-2636-8.
[3] DUMORNÉ K, SEVERE R. Marine enzymes and their industrial and biotechnological applications[J]. Minerva Biotecnologica, 2018, 30(4): 113-119. DOI: 10.23736/S1120-4826.18.02442-4.
[4] HASAN F, SHAH A A, JAVED S, et al. Enzymes used in detergents: Lipases[J]. African Journal of Biotechnology, 2010, 9(31): 4836-4844. DOI: 10.5897/AJBx09.026.
[5] KE M M, RAMESH B, HANG Y, et al. Engineering and characterization of a novel low temperature active and thermo stable esterase from marine Enterobacter cloacae[J].Internationd Journal of Biological Macromolecules, 2018, 118: 304-310. DOI: 10.1016/j.ijbiomac.2018.05.193.
[6] 卢昕. 生物传感器:国内研究现状及发展动向[J].广西师范大学学报(自然科学版), 1995,13(3): 61-65. DOI:10.16088/j.issn.1001-6600.1995.03.014.
[7] DAIHA K G, ANGELI R, de OLIVEIRA S D, et al. Are lipases still important biocatalysts? A study of scientific publications and patents for technological forecasting.[J]. PLoS ONE, 2015, 10(6): e0131624. DOI: 10.1371/journal.pone.0131624.
[8] NAVVABI A, RAZZAGHI M, FERNANDES P, et al. Novel lipases discovery specifically from marine organisms for industrial production and practical applications[J]. Process Biochemistry, 2018, 70(6): 61-70. DOI: 10.1016/j.procbio.2018.04.018.
[9] CARVALHO A L, FONSECA T S, MATTOS M C, et al. Recent advances in lipase-mediated preparation of pharmaceuticals and their intermediates[J]. International Journal of Moleculor Science, 2015, 16(12): 29682-29716. DOI:10.3390/ijms161226191.
[10] DUARTE A W F, DOS SANTOS J A, VIANNA M V, et al. Cold-adapted enzymes produced by fungi from terrestrial and marine Antarctic environments[J]. Critical Reviews in Biotechnology, 2018, 38(4): 600-619. DOI: 10.1080/07388551.2018.1379468.
[11] DALMASO G Z L D, FERREIRA D, VERMELHO A B. Marine extremophiles: a source of hydrolases for biotechnological applications[J]. Marine Drugs, 2015, 13(4): 1925-1965. DOI: 10.3390/md13041925.
[12] CHAROENPANICH J, SUKTANARAG S, TOOBBUCHA N. Production of a thermostable lipase by Aeromonas sp EBB-1 isolated from marine sludge in Angsila, Thailand[J]. Science Asia, 2011, 37(2): 105-114. DOI: 10.2306/scienceasia1513-1874.2011.37.105.
[13] RAMANI K, SARANYA P, JAIN S C, et al. Lipase from marine strain using cooked sunflower oil waste: production optimization and application for hydrolysis and thermodynamic studies[J]. Bioprocess and Biosystems Engineering, 2013, 36(3): 301-315. DOI: 10.1007/s00449-012-0785-2.
[14] LU P, GAO X W, DONG H, et al. Identification of a novel esterase from marine environmental genomic DNA libraries and its application in production of free all-trans-astaxanthin[J]. Journal of Agricultural and Food Chemistry, 2018, 66(11): 2812-2821. DOI: 10.1021/acs.jafc.7b06062.
[15] BENDIKIENE· V, KIRILIAUSKAITE· V, JUODKA B. Production of environmentally friendly biodiesel by enzymatic oil transesterification[J]. Journal of Environmental Engineering and Landscape Management, 2011, 19(2): 123-129. DOI: 10.3846/16486897.2011.579448.
[16] 钟成华, 张文东, 刘鹏, 等. 包埋固定化复合菌低温下处理养猪废水研究[J]. 广西师范大学学报(自然科学版), 2011, 29(3): 52-56. DOI:10.16088/j.issn.1001-6600.2011.03.008.
[17] BILAL M, ZHAO Y P, NOREEN S, et al. Modifying bio-catalytic properties of enzymes for efficient biocatalysis: a review from immobilization strategies viewpoint[J].Biocatalysis and Biotransformation, 2019, 37(3): 159-182. DOI: 10.1080/10242422.2018.1564744.
[18] 钱明华, 张继福, 张云, 等. 大孔树脂吸附-交联法固定脂肪酶[J]. 华南农业大学学报, 2019, 40(2): 103-110. DOI:10.7671/j.issn.1001-411X.20180431.
[19] 林海蛟, 王云鹏, 张云, 等. 无机载体吸附-交联固定化海洋脂肪酶技术研究[J]. 江西农业大学学报, 2019, 41(1): 186-196. DOI: 10.13836/j.jjau.2019023.
[20] 徐珊. 优化脂肪酶固定化工艺的研究[D]. 广州: 暨南大学, 2018.
[21] 杨秀芳, 陈梅, 马养民. 包埋-交联结合法固定β-呋喃果糖苷酶的研究[J]. 中国酿造, 2010(10): 56-59. DOI: 10.3969/j.issn.0254-5071.2010.10.018.
[22] 徐珊, 李任强, 张继福, 等. 使用国产环氧树脂LXEP-120固定化脂肪酶研究[J]. 广西师范大学学报(自然科学版), 2018, 36(4): 108-118. DOI: 10.16088/j.issn.1001-6600.2018.04.014.
[23] 朱衡, 林海蛟, 张继福, 等. 氨基载体共价结合固定化海洋假丝酵母脂肪酶[J]. 中国生物工程杂志, 2019, 39(7): 71-78. DOI: 10.13523/j.cb.20190710.
[24] 吴晓燕, 刘茜, 焦庆才, 等. 固定化米曲霉氨基酰化酶拆分DL-茶氨酸[J]. 广西师范大学学报(自然科学版), 2008, 26(4): 107-111. DOI: 10.16088/j.issn.1001-6600.2008.04.008.
[25] HONG J, GONG P J, YU J H, et al. Conjugation of α-chymotrypsin on a polymeric hydrophilic nanolayer covering magnetic nanoparticles[J]. Journal of Molecular Catalysis B: Enzymatic, 2006, 42(3/4): 99-105. DOI: 10.1016/j.molcatb.2006.07.008.
[26] HONG J, XU D M, GONG P J, et al. Conjugation of enzyme on superparamagnetic nanogels covered with carboxyl groups[J]. Journal of Chromatography B, 2007, 850(1/2): 499-506. DOI: 10.1016/j.jchromb.2006.12.035.
[27] ZHU Y T, REN X Y, LIU Y M, et al. Covalent immobilization of porcine pancreatic lipase on carboxyl-activated magnetic nanoparticles: Characterization and application for enzymatic inhibition assays[J]. Materials Science and Engineering: C, 2014, 38(2): 278-285. DOI: 10.1016/j.msec.2014.02.011.
[28] ZHU J, ZHANG J, LAI Q M, et al. Covalent immobilization of lipase onto citric acid-esterified loofah sponge[J]. Bioresources, 2013, 8(3): 3289-3298. DOI: 10.15376/biores.8.3.3289-3298.
[29] NETA N D A S, SANTOS J C S, SANCHO S D O, et al. Enzymatic synthesis of sugar esters and their potential as surface-active stabilizers of coconut milk emulsions[J]. Food Hydrocolloids, 2012, 27(2): 324-331. DOI: 10.1016/j.foodhyd.2011.10.009.
[30] 陈振锋, 王修建, 梁宏, 等. 含硫香料:硫代香叶醇的合成研究[J]. 广西师范大学学报(自然科学版), 1998, 16(3): 57-60. DOI:10.16088/j.issn.1001-6600.1998.03.011.
[31] 马骁, 侯彬彬, 赵玮钦. 改性硅藻土固定化脂肪酶催化蓖麻油制备生物柴油[J]. 山东化工, 2015, 44(24): 4-6, 10. DOI: 10.19319/j.cnki.issn.1008-021x.2015.24.004.
[1] LIN Haijiao, ZHANG Jifu, ZHANG Yun, HU Yunfeng. Immobilization of Lipase by Crosslinking and Then AdsorptionMethod Using Macroporous Adsorbent Resin [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(4): 100-108.
[2] XU Shan, LI Renqiang, ZHANG Jifu, ZHANG Yun, SUN Aijun, HU Yunfeng. Immobilization of Lipase Using Domestic Epoxy Resin LXEP-120 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(4): 108-118.
[3] ZHONG Cheng-hua, ZHANG Wen-dong, LIU Peng, CHENJian. Treatment of Piggery Wastewater by Entrapped Mixed Micro-Bio ofEmbed Method at Low Temperature [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(3): 52-56.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] XU Jianmin, WEI Jia, SHOU Yanfang. Comprehensive Evaluation of Urban Road Traffic Operation StatusBased on Game Theory-Cloud Model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(4): 1 -10 .
[2] ZHANG Canlong, LI Yanru, LI Zhixin, WANG Zhiwen. Block Target Tracking Based on Kernel Correlation Filter and Feature Fusion[J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(5): 12 -23 .
[3] XU Lunhui, CAO Yuchao, LIN Peiqun. Location and Dispatching of Multiple Emergency Materials Center Based on Fusion Immune Optimization and Genetic Algorithm[J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(6): 1 -13 .
[4] HU Jinming, WEI Duqu. Research on Generalized Sychronization of Fractional-order PMSM[J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(6): 14 -20 .
[5] ZHU Yongjian, LUO Jian, QIN Yunbai, QIN Guofeng, TANG Chuliu. A Method for Detecting Metal Surface Defects Based on Photometric Stereo and Series Expansion Methods[J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(6): 21 -31 .
[6] TANG Rongchai, WU Xiru. Real-time Detection of Passion Fruit Based on Improved YOLO-V3 Network[J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(6): 32 -39 .
[7] ZHANG Ruchang, QIU Jie, WANG Mingtang, CHEN Qingfeng. Classification of Protein 3D Structure Based on Adaptive Local Features[J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(6): 40 -50 .
[8] CHEN Dong, HU Kui. Cover Gorenstein AC-flat Dimensions[J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(6): 51 -55 .
[9] ZUO Jiabin, YUN Yongzhen. Anti-periodic Boundary Value Problem for a Class of Fractional Differential Equations[J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(6): 56 -64 .
[10] WANG Yue, YE Hongyan, LEI Jun, SUO Hongmin. Infinitely Many Classical Solutions for Kirchhoff Type Problem with Linear Term[J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(6): 65 -73 .