Journal of Guangxi Normal University(Natural Science Edition) ›› 2020, Vol. 38 ›› Issue (2): 115-120.doi: 10.16088/j.issn.1001-6600.2020.02.013

Previous Articles     Next Articles

Active Disturbance Rejection Control of Three-AxisStabilized Platform Based on BP Neural Network

LIU Xin1, LUO Xiaoshu1*, ZHAO Shulin2   

  1. 1.College of Electronic Engineering, Guangxi Normal University, Guilin Guangxi 541004,China;
    2.School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin Guangxi 541004,China
  • Received:2019-03-07 Published:2020-04-02

Abstract: In view of the non-linear characteristics of the three-axis stabilized pan-tilt servo system, the anti-disturbance ability of PD control is poor, and the setting process of the active disturbance rejection control is time-consuming and laborious due to the large number of parameters. By using the global approximation ability and self-learning ability of BP neural network, a composite controller is composed of BP neural network and active disturbance rejection control. All the key parameters of active disturbance rejection control are self-tuned and optimized, which is applied to the three-axis stabilized pan-tilt servo system with Stribeck friction model. The simulation results show that the method is feasible and effective for parameter auto-tuning. Compared with the conventional ADRC with fixed parameters and PD control, it has higher control accuracy and stronger anti-disturbance ability, and has better application value for improving the performance of the stabilized platform.

Key words: stabilized platform, servo system, PD control, active disturbance rejection control, BP neural network

CLC Number: 

  • TP273
[1] GAO Zhiqiang.Active disturbance rejection control:from an enduring idea to an emerging technology[C]// 2015 10th International Workshop on Robot Motion and Control.Piscataway,NJ:IEEE Press,2015:269-282. DOI:10.1109/RoMoCo.2015.7219747.
[2] PING Jiang,WANG Peiguang.Parameters optimization of active disturbance rejection controller with genetic algorithm for cascade speed control system[C]// Fourth International Conference on Intelligent Computation Technology and Automation.Los Alamitos,CA:IEEE Computer Society,2011:464-467.DOI:10.1109 /ICICTA.2011.129.
[3] 唐堂,魏承赟,罗晓曙,等.基于附加惯性项人群搜索算法的四旋翼无人机姿态控制研究[J].广西师范大学学报(自然科学版),2018,36(4):12-19.DOI:10.16088/j.1001-6600.2018.04.002.
[4] 陈林奇,李廷会.基于双空间PSO算法的四旋翼无人机自抗扰控制器优化设计[J].广西师范大学学报(自然科学版),2019,37(3):42-49.DOI:10.16088/j.issn.1001-6600.2019.03.005.
[5] 刘晓丽,兰英.狼群算法优化自抗扰控制器的应用[J].计算机与数字工程,2018,46(11):2179-2182,2190.DOI: 10.3969/j.issn.1672-9722.2018.11.004.
[6] HUANG Yonghao,FEI Qing.Clonal selection algorithm based optimization of the ADRC parameters designed to control UAV longitudinal channel[C]//2015 IEEE International Conference on Control System,Computing and Engineering.Piscataway,NJ:IEEE Press,2015:448-452.DOI:10.1109/ICCSCE.2015.7482227.
[7] GENG Qingbo,TIAN Peigang.The ADRC design for UAV longitudinal channel and its parameter optimization based on ACO[C]//2013 10th IEEE International Conference on Control and Automation.Piscataway,NJ:IEEE Press,2013:373-377.DOI:10.1109/ICCA.2013.6565079.
[8] 魏立新,赵默林,范锐,等.基于改进鲨鱼优化算法的自抗扰控制参数整定[J].控制与决策,2019,34(4):816-820. DOI:10.13195/j.kzyjc.2017.1302.
[9] 钟海鑫,丘森辉,罗晓曙,等.基于附加惯性项BP神经网络的四旋翼无人机姿态控制研究[J].广西师范大学学报(自然科学版),2017,35(2):24-31.DOI:10.16088/j.issn.1001-6600.2017.02.004.
[10]齐晓慧,李杰,韩帅涛.基于BP神经网络的自适应自抗扰控制及仿真[J].兵工学报,2013,34(6):776-782.
[11]关学忠,白云龙,高哲.基于BP神经网络的无刷直流电机的自抗扰控制[J].计算机与数字工程,2014,42(12): 2399-2403.DOI:10.3969/j.issn1672-9722.2014.12.040.
[12]朱启轩,张红刚,高军科.光电稳定平台神经网络自抗扰控制方法[J].电光与控制,2018,25(3):10-14.
[13]舒林.基于ARM的航拍三轴云台控制系统设计与研究[D].沈阳:沈阳航空航天大学,2018:6-12.
[14]王日俊,白越,续志军,等.基于扰动观测器的多旋翼无人机机载云台模糊自适应跟踪控制[J].浙江大学学报(工学版),2015,49(10):2005-2012.
[15]刘金琨.先进PID控制及其MATLAB仿真[M].4版.北京:电子工业出版社,2016:358-359.
[16]李明.无人机三轴云台的稳定控制研究[D].桂林:桂林电子科技大学,2017:7-8.
[17]KARNOPP D.Computer simulation of stick-slip friction in mechanical dynamic systems[J].Journal of Dynamic Systems,Measurement,and Control,1985,107(1):100-103.DOI:10.1115/1.3140698.
[18]唐堂,罗晓曙,吕万德,等.四旋翼无人机滑模自抗扰控制[J].广西师范大学学报(自然科学版),2018,36(2):56-62.DOI:10.16088/j.issn.1001-6600.2018.02.008.
[19]韩京清.自抗扰控制技术:估计补偿不确定因素的控制技术[M].北京:国防工业出版社,2008:255-262.
[20]朱斌.自抗扰控制入门[M].北京:北京航空航天大学出版社,2017:30-35.
[1] XU Lunhui, CHEN Kaixun. Prediction of Road Network Speed Distribution Based on BP Neural Network Optimization by Improved Firefly Algorithm [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 1-8.
[2] TANG Tang, WEI Chengyun, LUO Xiaoshu, QIU Senhui. Study of Seeker Optimization Algorithm with Inertia TermSelf-tuning to Attitude Stability of Quadrotor UAV [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(4): 12-19.
[3] TANG Tang,LUO Xiaoshu,Lü Wande,LIU Xin. Sliding Mode Active Disturbance Rejection Control of Quadrotor Unmanned Aerial Vehicle [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(2): 56-62.
[4] ZHONG Haixin, QIU Senhui, LUO Xiaoshu, TANG Tang, YANG Li, ZHAO Shuai. Study of Applying BP Neural Network with Inertia Term Self-tuningto Attitude Stability of Quadrotor Unmanned Aerial Vehicle [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(2): 24-31.
[5] PENG Xinjian, WENG Xiaoxiong. Bus Travel Time Prediction Based on BP Neural Network Optimized by Firefly Algorithm [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(1): 28-36.
[6] CHEN Jin, LUO Xiao-shu. Extraction and Recognition of Cell Image Feature Basedon Wavelet Transform and Invasive Weed Optimization [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(2): 22-28.
[7] HUANG Jing, LUO Xiao-shu. Application of BP Neural Network in Ice Accretion over Transmission Line [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(4): 25-27.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HU Hua. Generalized Ornstein-Uhlenbeck Processes Associatedwith Martingale and Its Application in Finance[J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(1): 84 -92 .
[2] WEI Yangjiang, LIANG Yiyao, TANG Gaohua, SU Leilei, CHEN Weining. Cubic Mapping Graphs on the Quotient Ringsof the Gaussian Integer Rings of Modulo n[J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(3): 53 -61 .
[3] XU Lun-hui, LIU Jing-ning, ZHU Qun-qiang, WANG Qing, XIE Yan, SUO Sheng-chao. Path Deviation Control of Automatic Guided Vehicle[J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(1): 1 -6 .
[4] KUANG Xian-yan, WU Yun, CAO Wei-hua, WU Yin-feng. Cellular Automata Simulation Model for Urban MixedNon-motor Vehicle Flow[J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(1): 7 -14 .
[5] XIAO Rui-jie, LIU Ye, XIU Xiao-ming, KONG Ling-jiang. State Transfer of Two Mechanical Oscillators in Coupled CavityOptomechanical System[J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(1): 15 -19 .
[6] HUANG Hui-qiong, QIN Yun-mei. Overtaking Model Based on Drivers’ Characteristics[J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(1): 20 -26 .
[7] YUAN Le-ping, SUN Rui-shan. Probabilistic Safety Assessment of Air Traffic Conflict Resolution[J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(1): 27 -31 .
[8] YANG Pan-pan, ZHU Long-ji, CAO Meng-jie. TSC Type of Reactive Power Compensation Control SystemBased on STM32[J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(1): 32 -37 .
[9] ZHANG Mei-yue. Some New Results for the Electron Beams Focusing System Model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(1): 38 -44 .
[10] HOU Xiao-dong, CAI Bin-bin, JIN Wei-dong, DUAN Wang-wang. A New Weighted Evidence Fusion Algorithm Based on Evidence Distanceand Fuzzy Entropy Theory[J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(1): 45 -51 .