Journal of Guangxi Normal University(Natural Science Edition) ›› 2019, Vol. 37 ›› Issue (1): 133-141.doi: 10.16088/j.issn.1001-6600.2019.01.015

Previous Articles     Next Articles

Critical Node Identification for Power Systems Based on Network Structure and Power Tracing

ZOU Yanli*,YAO Fei,WANG Yang,WANG Ruirui,WU Lingjie   

  1. College of Electronic Engineering, Guangxi Normal University, Guilin Guangxi 541004,China
  • Received:2018-06-03 Online:2019-01-20 Published:2019-01-08

Abstract: Based on the topology of the power grid and the power tracing technique, a critical node identification method is proposed. Firstly,according to the result of the power flow calculation, the power flow direction between nodes can be obtained and then the power grid can be traced,so as to get the link strength matrix of nodes and establish the weighted directed network model for the power grid.Accordingly, the outbound and inbound strengths of the nodes as well as an evaluation index of nodes can be defined according to their importance based on the node strength and load weight.Taking IEEE39 system and IEEE14 system as testing cases, the importance of the nodes in each system is ranked. According to the results of ranking, the nodes will be overload attacked. To verify whether the order of importance of the nodes is reasonable,the change of power flow entropy is calculated after the node is overload attacked. The results show that the proposed method is more reasonable and effective in identifying the critical nodes of the power grid.

Key words: weighted-directed network, power tracing, power flow entropy, overload attack, critical node identification

CLC Number: 

  • TM74
[1] MOTTER A E,LAI Yingcheng.Cascade-based attacks on complex networks[J].Physical Review E,2002,66(6):065102. DOI:10.1103/PhysRevE.66.065102.
[2] PASTOR-SATORRAS R,VESPIGNANI A.Immunization of complex networks[J].Physical Review E,2002,65(3): 036104.DOI:10.1103/PhysRevE.65.036104.
[3] ZHAO Ming,ZHOU Tao,WANG Binghong,et al.Enhanced synchronizability by structural perturbations[J].Physical Review E,2005,72(5):057102.DOI: 10.1103/PhysRevE.72.057102.
[4] 印永华,郭剑波,赵建军,等.美加“8.14”大停电事故初步分析以及应吸取的教训[J].电网技术,2003,27(10):8-11,16.DOI: 10.13335/j.1000-3673.pst.2003.10.002.
[5] ZAMORA-LOPEZ G,ZHOU Changsong,KURTHS J.Cortical hubs form a module for multisensory integration on top of the hierarchy of cortical networks[J].Frontiers in Neuroinformatics,2010,4:1.DOI: 10.3389/neuro.11.001.2010.
[6] 徐行,李华强,赵祥云,等.基于运行状态和网络结构的节点综合脆弱性评估[J].电网技术,2014,38(3):731-735.DOI: 10.13335/j.1000-3673.pst.2014.03.028.
[7] 郑京,邹艳丽,何郁郁,等.两种分布式电站连接策略对网络动态特性的影响[J].广西师范大学学报(自然科学版),2015,33(2):15-21.DOI: 10.16088/j.issn.1001-6600.2015.02.003.
[8] 徐林,王秀丽,王锡凡.电气介数及其在电力系统关键线路识别中的应用[J].中国电机工程学报,2010,30(1):33-39. DOI:10.13334/j.0258-8013.pcsee.2010.01.007.
[9] 梁颖,方瑞明,卢小芬,等.基于复杂网络理论的电力系统脆弱线路辨识研究现状[J].电力系统保护与控制,2012,40(20):151-155.DOI:10.3969/j.issn.1674-3415.2012.20.027.
[10] 张富超,谢成荣,沈立新,等.基于源流路径链和输电介数的电网关键线路辨识[J].电力系统保护与控制,2015,43(21):7-12.
[11] ALBERT R,ALBERT I,NAKARADO G L.Structural vulnerability of the North American power grid[J].Physical Review E,2004,69(2):025103.DOI:10.1103/PhysRevE.69.025103.
[12] KINNEY R,CRUCITTI P,ALBERT R,et al.Modeling cascading failures in the North American power grid[J].European Physical Journal B:Condensed Matter and Complex Systems,2005,46(1):101-107.DOI:10.1140/epjb/e2005-00237-9.
[13] 谭玉东,李欣然,蔡晔,等.基于电气距离的复杂电网关键节点识别[J].中国电机工程学报,2014,34(1):146-152.DOI: 10.13334/j.0258-8013.pcsee.2014.01.017.
[14] 林鸿基,赵昱宣,林冠强,等.基于改进节点重要度贡献矩阵的电网关键节点识别[J].电力建设,2017,38(10):62-68. DOI:10.3969/j.issn.1000-7229.2017.10.009.
[15] 曹一家,陈晓刚,孙可.基于复杂网络理论的大型电力系统脆弱线路辨识[J].电力自动化设备,2006,26(12):1-5,31. DOI:10.3969/j.issn.1006-6047.2006.12.001.
[16] 王涛,高成彬,顾雪平,等.基于功率介数的电网关键环节辨识[J].电网技术,2014,38(7):1907-1913.DOI:10.13335/j. 1000-3673.pst.2014.07.029.
[17] 王佳裕,顾雪平,王涛,等.一种综合潮流追踪和链接分析的电力系统关键节点识别方法[J].电力系统保护与控制,2017,45(6):22-29.DOI:10.7667/PSPC160434.
[18] 谢开贵,李春燕,赵渊,等.电力系统功率分配的解析模型和算法[J].中国电机工程学报,2005,25(22):27-31.DOI:10. 13334/j.0258-8013.pcsee.2005.22.005.
[19] 曹一家,王光增,曹丽华,等.基于潮流熵的复杂电网自组织临界态判断模型[J].电力系统自动化,2011,35(7):1-6.
[1] ZHANG Mingyu,ZHAO Meng,CAI Fuhong,LIANG Yu,WANG Xinhong. Wave Power Prediction Based on Deep Learning [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(3): 25-32.
[2] XIANG Qinqin, LIAO Zhixian, LI Tinghui, JIANG Pinqun, HUANG Guoxian. Research on Modeling and Control of Photovoltaic Microgrid Inverter under Random Disturbance of Power Grid [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(1): 19-25.
[3] ZOU Yanli, WANG Yang, LIU Shusheng, YAO Fei. Study of Cascading Failure in the Grid under the Capacity Load Model with Neighbors Degree Information [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 27-36.
[4] WANG Jianwei,ZOU Yanli,WANG Ruirui,ZHOU Jian. Study on Network Structure and Grid Connection of Distributed Power Stations [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(3): 21-32.
[5] LI Jiankang,WEI Duqu,LUO Xiaoshu,QIN Yinghua. Study on Chaotic Synchronization Control of Distributed Generation System and Inductive Load Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(3): 33-41.
[6] CHEN Siyu, ZOU Yanli, ZHOU Jian, TAN Huazhen. Study on the Power Allocation of Power Generators and Unbalanced Development of Loadson Power Grids [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 52-59.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!