Journal of Guangxi Normal University(Natural Science Edition) ›› 2018, Vol. 36 ›› Issue (4): 67-75.doi: 10.16088/j.issn.1001-6600.2018.04.009

Previous Articles     Next Articles

Research on Asset Portfolio Based on ARMA-GARCH-t andBlack-Litterman Model

DU Quanying, XU Meiping*   

  1. School of Science, Beijing Technology and Business University, Beijing 100048, China
  • Received:2017-10-31 Published:2018-10-20

Abstract: In this paper, the ARMA-GARCH-t model is employed to forecast daily return and volatility of the three stocks with a high market value in different industries of Shanghai Stock Exchange. Under the framework of extended Black-Litterman (BL) model, investor’s subjective return distributions are combined with asset’s priori balanced distribution. Then the weights of the asset allocation is calculated and compared with the ones from traditional Markowitz mean-variance (MV) investment portfolio. The empirical results show that the BL model puts more weight to the asset with high investor’s confidence level and the return of portfolio is larger than the MV case. Finally, the analysis results of the margin trading are applied to verify the validity of the market allocation of the three stocks, which confirms the conclusion that the BL model is more in line with investor expectations. The study can provide more reference for asset managers and investors in asset allocation.

Key words: ARMA-GARCH-t model, Black-Litterman model, subjective view, portfolio, margin trading

CLC Number: 

  • F830.9
[1] BRINSON G P, HOOD L R,BEEBOWER G L. Determinants of portfolio performance[J]. Financial Analysts Journal, 1986, 42(4):39-44.DOI: 10.2469/faj.v42.n4.39.
[2] De BONDT W F M,THALER R.Dose the stock market overreact?[J].Journal of Finance,1985,40(3):793-805. DOI: 10.1111/j.1540-6261.1985.tb05004.x.
[3] KAHNEMAN D,KNETSCH J L,THALER R H.The endowment effect:evidence of losses valued more than gains[M]//Handbook of Experimental Economics Results:Volume 1.Amsterdam:North-Holland Publishing Co.,2008:939-948.DOI: 10.1016/S1574-0722(07)00100-X.
[4] KAHNEMAN D, THALER R H. Anomalies: utility maximization and experienced utility[J].Journal of Economic Perspectives,2006,20(1):221-234.DOI:10.1257/089533006776526076.
[5] MARKOWITZ H.Portfolio selection[J].Journal of Finance,1952,7(1):77-91.DOI: 10.1111/j.1540-6261.1952. tb01525.x.
[6] BLACK F,LITTERMAN R.Global portfolio optimization[J].Financial Analysts Journal,1992,48(5):28-43. DOI:10.2469/faj.v48.n5.28
[7] 王敬,王颖.机构投资者资产配置方法研究[J].价值工程,2006,25(2):115-119.DOI:10.14018/j.cnki.cn13-1085/n.2006.02.041.
[8] 温琪,陈敏,梁斌.基于Black-Litterman框架的资产配置策略研究[J].数理统计与管理,2011,30(4):741-751. DOI:10.13860/j.cnki.sltj.2011.04.021.
[9] 李心愉,付丽莎.基于Black-Litterman模型的保险资金动态资产配置模型研究[J].保险研究,2013(3):24-38. DOI:10.13497/j.cnki.is.2013.03.001.
[10] 徐漫,马晓微,胡泽元.基于Black-Litterman法的我国养老金组合管理研究[J].财政研究,2016(4):71-81.DOI: 10.19477/j.cnki.11-1077/f.2016.04.007.
[11] 鲁思瑶,徐美萍.基于混合Copula和ARMA-GARCH-t模型的股票指数风险度量研究[J].广西师范大学学报(自然科学版),2016,34(1):93-101.DOI:10.16088/j.issn.1001-6600.2016.01.014.
[12] 鲁思瑶,徐美萍.基于扭曲混合Copula和ARMA-GARCH-t模型的投资组合风险分析:以上证综指、中证综合债和上证基金为例[J].数理统计与管理,2017,36(6):1131-1140.DOI:10.13860/j.cnki.sltj.20170331-002.
[13] GIACOMETTI R,BERTOCCHI M,RACHEV S T,et al.Stable distributions in the Black-Litterman approach to asset allocation[J].Quantitative Finance,2007,7(4):423-433.DOI:10.1080/14697680701442731.
[14] HARRIS R D F,STOJA E,TAN Linzhi.The dynamic Black-Litterman approach to asset allocation[J].European Journal of Operational Research,2017,259(3):1085-1096.DOI:10.1016/j.ejor.2016.11.045.
[15] KENDALL M G,HILL A B.The analysis of economic time-series:part I prices[J].Journal of the Royal Statistical Society:Series A,1953,116(1):11-34.DOI:10.2307/2980947.
[16] WALTERS J.The Black-Litterman model in detail[EB/OL]. (2014-06-23)[2017-10-30].http://dx.doi.org/10.2139/ssrn.1314585.
[17] XIAO Yugu,VALDEZ E A.A Black-Litterman asset allocation model under elliptical distributions[J]. Quantitative Finance,2015,15(3):509-519.DOI:10.1080/14697688.2013.836283.
[18] ARULRAJ M,KARTHIKA M P R.Global portfolio optimization for BSE sensex using the enhanced Black-Litterman model[J].Procedia Engineering,2012,38:2987-2997.DOI:10.1016/j.proeng.2012.06.349.
[19] 王振龙.应用时间序列分析[M].2版.北京:中国统计出版社,2010:136-156.
[20] 孟勇.对Black-Litterman模型加入主观收益方法的改进[J].统计研究,2012,29(2):94-99.DOI:10.19343/j. cnki.11-1302/c.2012.02.013.
[21] 巴曙松,朱虹.融资融券、投资者情绪与市场波动[J].国际金融研究,2016(8):82-96.DOI:10.16475/j.cnki. 1006-1029.2016.08.008.
[1] WEN Xian , DENG Guohe. Monte Carlo Simulations with Dual Variables Pricing of Barrier Optionsin a Stochastic Volatility Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(2): 90-97.
[2] DING Xin-yue, XU Mei-ping. Computing VaR and ES Based on the Extreme Value Theory:A Case Study of ZTE Data [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(2): 76-81.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!