Journal of Guangxi Normal University(Natural Science Edition) ›› 2016, Vol. 34 ›› Issue (2): 8-14.doi: 10.16088/j.issn.1001-6600.2016.02.002
Previous Articles Next Articles
DAI Jingyu, ZHANG Xueliang, DENG Minyi, TAN Huili
CLC Number:
[1] GERHARDT M, SCHUSTER H, TYSON J J. A cellular automaton model of excitable media including curvature and dispersion[J]. Science, 1990, 247(4950): 1563-1566. [2] DAVIDENKO J M, KENT P F, CHIALVO D R, et al. Sustained vortex-like waves in normal isolated ventricular muscle[J]. Proceedings of the National Academy of Sciences, 1990, 87: 8785-8789. [3] DAVIDENKO J M, PERTSOV A V, SALOMONSZ R, et al. Stationary and driftingspiral waves of excitation in isolated cardiac muscle[J]. Nature, 1992, 355: 349-351. [4] NASH M P, PANFILOV A V. Electromechanical model of excitable tissue to study reentrant cardiac arrhythmias[J]. Progress in Biophysics and Molecular Biology, 2004, 85(2): 501-522. [5] 欧阳颀. 反应扩散系统中螺旋波的失稳[J]. 物理, 2001, 30(1): 30-35. [6] CHEN J X, HU B. Spiral breakup and consequent patterns induced by strong polarized advective field[J]. Europhysics Letters, 2008, 84(3): 34002. [7] LIU G Q, WU N J, YING H P. The drift of spirals under competitive illumination in an excitable medium[J]. Communications in Nonlinear Science and Numerical Simulation, 2013, 18(9): 2398-2401. [8] 钟敏,唐国宁.限制钾离子电流抑制心脏中螺旋波和时空混沌[J].广西师范大学学报(自然科学版),2010, 28(2): 6-8. [9] 马军,应和平,李延龙,等.混沌信号驱动实现螺旋波和时空混沌抑制[J].郑州大学学报(理学版),2006,38(1): 45-49. [10] JIMÈNEZ Z A, MARTS B, STEINBOCK O. Pinned scroll rings in an excitable system[J]. Physcial Review Letters, 2009, 102(24): 244101. [11] 戴瑜, 韦海明, 唐国宁. 非均匀激发介质中螺旋波的演化[J]. 物理学报, 2010,59(9): 5979-5983. [12] HE D H, HU G, ZHAN M, et al. Pattern formation of spiral waves in an inhomogeneous medium with small-world connections[J]. Physcial Review E, 2002, 65(5): 055204. [13] FELDMAN A, YIN J Z, SAXBERG B E H, et al. Vortex wave stability in homogeneous excitable media: Simulations on a randomized discrete iscrete lattice[J]. Engineering in Medicine and Biology Society, 1995, 1: 25-26. [14] DILLON S M, ALLESSIE M A, URSELL P C, et al. Influences of anisotropic tissue structure on reentrant circuits in the epicardial border zone of subacute canine infarcts[J]. Circulation Research, 1988, 63(1): 182-206. [15] HOYT R H, COHEN M L, SAFFITZ J E. Distribution and three-dimensional structure of intercellular junctions in canine myocardium[J]. Circulation Research, 1989, 64(3): 563-574. [16] LUKE R A, SAFFITZ J E. Remodeling of ventricular conduction pathways in healed canine infarct border zones[J]. Journal of Clinical Investigation, 1991, 87(5): 1594-1602. [17] 田兴玲,刘慕仁,郭俊华.小世界网络上的差额选举模型[J].郑州大学学报(理学版),2008,40(2):60-65. [18] 梁玉娟.从动能损失看弯道路段的通行能力[J].四川师范大学学报(自然科学版),2011,34(3):355-359. [19] DENG M Y, CHEN X Q, TANG G N. The effect of cellular aging on the dynamics of spiral waves[J]. Chin Phys B, 2014, 23(12): 120503. [20] GREENBERG J M, HASTINGS S P. Spatial patterns for discrete models of diffusion in excitable media[J]. SIAM J Appl Math, 1978, 34(3): 515-523. [21] ZHAO Y, BILLINGS S A, ROUTH A F. Identification of the Belousov-Zhabotingskii reaction using cellular automata[J]. International Journal of Bifurcation and Chaos, 2007, 17(5): 1687-1701. |
[1] | ZHANG Xueliang,TAN Huili, BAI Kezhao, TANG Guoning,DENG Minyi. A Cellular Automaton Model Connected to the ConductionRestitution Property of Cardiac Cells [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(4): 1-9. |
[2] | HUANG Wen,TAN Huili. Effect of Cardiac Memory on Spiral Wave [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(2): 1-8. |
|