Journal of Guangxi Normal University(Natural Science Edition) ›› 2015, Vol. 33 ›› Issue (3): 71-74.doi: 10.16088/j.issn.1001-6600.2015.03.011

Previous Articles     Next Articles

Global Attractivity of the Max-Type Difference Equation xn=max${\frac{1}{x_{n-k}^{\alpha}},\frac{A_n}{x^{\beta}_{n-k-2}}}$

HAN Cai-hong, LI Lüe, PANG Lin-na, HOU Xin-xin   

  1. College of Mathematics and Statistics, Guangxi Normal University, Guilin Guangxi 541004, China
  • Received:2015-03-12 Online:2015-05-10 Published:2018-09-20

Abstract: In this paper, the global attractivity of the max-type difference equation with index xn=max${\frac{1}{x_{n-k}^{\alpha}},\frac{A_n}{x^{\beta}_{n-k-2}}}$,n=0,1,…, where k∈N and k≥1, 0<α≤1,0<β<1, An∈(0,1], x-k-2,x-k-1,…,x-1∈(0,+∞) is studied. Every positive solution of this difference equation is proved to converge to 1.

Key words: max-type difference equations, positive solution, convergence, global attractivity

CLC Number: 

  • O175.7
[1] 刘亚文,陈亦望,徐鑫,等. 基于辅助差分方程的完全匹配层在时域多分辨率分析算法中的应用与性能分析[J]. 物理学报, 2013, 62(3): 034101.
[2] 曾维. 差分方程在人口增长预测中的应用研究[J]. 计算机仿真, 2011,28(5): 358-362.
[3] 韩彩虹, 李略, 黄荣里. 差分方程xn+1=pn+xn/xn-1的动力学性质[J]. 广西师范大学学报:自然科学版, 2013, 31(1):44-47.
[4] STEVICS. Periodicity of a class of nonautonomous max-type difference equations[J]. Applied Mathematics and Computation, 2011,217(23): 9562-9566.
[5] CRANSTON D W, KENT C M. On the boundedness of positive solutions of the reciprocal max-type difference equation xn=max${\frac{A_{n-1}^{1}}{x_{n-1}},\frac{A_{n-1}^{2}}{x_{n-2}},···,\frac{A_{n-1}^{t}}{x_{n-1}}}$ with periodic parameters[J]. Applied Mathematics and Computation, 2013, 221: 144-151.
[6] GELISKEN A,ÇINAR C, KARATAS R, et al. The nature of solutions of the difference equation xn=max{A/xn-2, B/xαn-3} [C]// Proceedings of First International Conference on Analysis and Applied Mathematics: AIP Conference Proceedings Vol 1470. Melville, NY: AIP Publishing LLC, 2012:50-52.
[7] YANG Xiao-fan, LIAO Xiao-feng, LI Chuan-dong. On a difference equation with maximum[J]. Applied Mathematics and Computation, 2006, 181(1): 1-5.
[8] GELISKEN A, CINAR C. On the global attractivity of a max-type difference equation[J]. Discrete Dynamics in Nature and Society, 2009, 2009:812674.
[9] SUN Fang-kuan. On the asymptotic behavior of a difference equation with maximum[J]. Discrete Dynamics in Nature and Society, 2008, 2008:243291.
[1] LEI Qingzhu,QIN Yongsong,LUO Min. Empirical Bayes Estimation and Test for Scale ExponentialFamilies under Strong Mixing Samples [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(3): 63-74.
[2] HAN Caihong, LI Lüe, HUANG Lili. Global Asymptotic Stability of a Class of Difference Equations [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(1): 53-57.
[3] HAN Cai-hong, LI Lue, HUANG Rong-li. Dynamics of the Difference Equation xn+1=pn+xnxn-1 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(1): 44-47.
[4] ZHAO Wei-qi, LIANG Jia-rong, LI Xia. Finite-time Terminal Sliding Mode Control for Singular Systems [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(4): 73-78.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!