Journal of Guangxi Normal University(Natural Science Edition) ›› 2014, Vol. 32 ›› Issue (4): 18-25.

Previous Articles     Next Articles

Division Method of Coordinated Control Sub-areas Based on Group Decision Making Theory and Support Vector Machine

CHEN Si-yi2, LUO Qiang1, HUANG Hui-xian3   

  1. 1. College of Civil Engineering, Guangzhou University, Guangzhou Guangdong 510006, China;
    2. College of Automation Science and Engineering, South China University of Technology, Guangzhou Guangdong 510640, China;
    3.College of Information Engineering, Xiangtan University, Xiangtan Hunan 411105, China
  • Received:2014-09-03 Published:2018-09-26

Abstract: According to the sub-areas division problems for urban traffic signal control, this paper uses group decision making theory and support vector machine algorithm and considers four factors such as the distance between adjacent intersections, road traffic saturation and signal timing parameters and then proposes “separation/merge factor” concept to represent judgment basis for sub-area division and establishes coordinated control model for sub-area division. Finally, an example is analyzed and programming calculation with MATLAB is introduced to described the dynamic division process of cont rolling sub-area.

Key words: traffic engineering, sub-area division, group decision making, multi-objective programming, support vector machine, separation/merge factor

CLC Number: 

  • U491
[1] 徐建闽. 交通管理与控制[M]. 北京:人民交通出版社,2007.
[2] 尚德申,石建军. 交通控制区域动态划分研究[J]. 道路交通与安全,2007,7(1):27-29.
[3] 杨庆芳,陈林. 交通控制子区动态划分方法[J]. 吉林大学学报:工学版,2006,36(S2):139-142.
[4] 段后利,李志恒. 交通控制子区动态划分模型[J]. 吉林大学学报:工学版,2009,39(S2):13-18.
[5] 李瑞敏,陆化普,史其信. 交通信号控制子区模糊动态划分方法研究[J]. 武汉理工大学学报:交通科学与工程版,2008,32(3):381-384.
[6] 卢凯,徐建闽,李轶舜. 基于关联度分析的协调控制子区划分方法[J]. 华南理工大学学报:自然科学版,2009,37(7):6-10.
[7] 徐泽水,赵华. 偏好信息为模糊互反判断矩阵的模糊多属性决策法[J]. 模糊系统与数学,2004,18(4):115-121.
[8] 邓乃杨,田英杰. 数据挖掘中的新方法:支持向量机[M]. 北京:科学出版社,2004.
[9] 王媛,杨兆升. 基于层次支持向量机的区域战略交通控制策略优化方法[J]. 吉林大学学报:工学版,2009,39(1):38-44.
[10] 董婷. 支持向量机分类算法在MATLAB环境下的实现[J]. 榆林学院学报,2008,18(4):94-96.
[11] ALIREZAL T, FABIOL D F, CRISTINA C, et al. Neural networks and support vector machine algorithms for automatic cloud classsification of whole-sky ground-based images [J]. IEEE Geoscience and Remote Sensing Letters, 2014. 12(3): 666-670.
[12] JUTAROPL R,. BHUSANA P., PRACHYA K., et al. Modeling of mean-field ising-hysteresis behavior: A support vector machine classification [J]. Integrated Ferroelectrics, 2009 155(1):66-70.
[1] ZHU Yongjian, PENG Ke, QI Guangwen, XIA Haiying, SONG Shuxiang. Defect Detection of Solar Panel Based on Machine Vision [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 105-112.
[2] LÜ Kaichen, YAN Hongfei, CHEN Chong. Quantitative Investment Strategy Based on CSI 300 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(1): 1-12.
[3] LI Ziyan,LIU Weiming. New Method of Moving Vehicle Detection Based on Partial HOG Feature [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(3): 1-13.
[4] LIU Yanhong, LUO Xiaoshu, CHEN Jin, GUO Lei. Research on Cervical Cell Image Feature Extraction and Recognition [J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(2): 61-66.
[5] KUANG Xian-yan, WU Yun, CAO Wei-hua, WU Yin-feng. Cellular Automata Simulation Model for Urban MixedNon-motor Vehicle Flow [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(1): 7-14.
[6] YUAN Le-ping, SUN Rui-shan. Probabilistic Safety Assessment of Air Traffic Conflict Resolution [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(1): 27-31.
[7] ZUO Xin, HUANG Hai-long, LIU Jian-wei. Classifier of p-norm Regularizing SVM with Nonconvex Conjugate Gradient Algorithm [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(3): 51-58.
[8] WANG Shi-ming, XU Jian-min, LI Ri-han. Improvement on On-ramp Control Algorithm of Urban Freeway [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(2): 1-6.
[9] YAN Xiao-ming, ZHENG Zhi. Optimizing Parameters of SVM Based on Combined Bionic Algorithm [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(2): 114-118.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!