Journal of Guangxi Normal University(Natural Science Edition) ›› 2014, Vol. 32 ›› Issue (4): 11-17.

Previous Articles     Next Articles

Speed Estimation of Permanent Magnet Synchronous Motor Based on Optimized EKF

WANG Jian1, HUANG Zhi-gong1, XU Jin-hai2   

  1. 1.Electronic Engineering, Guangxi Normal University, Guilin Guangxi 541004, China;
    2. Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin Guangxi 541004, China
  • Received:2014-09-03 Published:2018-09-26

Abstract: An extended Kalman filter(EKF) speed estimation method based on improved Particle Swarm Optimization(IPSO) is proposed to solve the problem that the estimation of system noise matrix and measurement noise matrix are difficult to obtain accurately when EKF is used to estimate the speed in the sensorless speed direct torque control(DTC) system of permanent magnet synchronous motors(PMSM). This method combines the advantages of Particle Swarm Optimization and Genetic Algorithms. Simulation results show that the IPSO Kalman filter can find the optimum solution more quickly when it is applied to the optimization of Kalman filter system noise matrix and measurement noise matrix comparing with genetic algorithms and standard particle swarm optimization.

Key words: PMSM, direct torque control, speed sensorless, extended Kalman filter, improved particle swarm optimization

CLC Number: 

  • TM341
[1] SHI K L, CHAN T F, WONG Y K, et al. Speed estimation of an induction motor drive using an optimized extended Kalman filter[J]. IEEE Transactions on Industrial Electronics, 2002,49(1):124-133.
[2] BUYAMIN S, FINCH J W.Comparative study on optimising the EKF of speed estimation of an induction motor using simulated annealing and genetic algoirthm[C]//Electirc Machines & Dirves Cofnerence, IEMDC’ 07. IEEE International, 2007,2:1689-1694.
[3] BOLOGNANI S, TUBIANA L, ZIGLIOTTO M. Extended kalman filter tuning in sensorless PMSM drives[J]. IEEE Trans on Industry Applications, 2003, 39(6):1741-1747.
[4] BOLOGNANI S, OBOE R, ZIGLIOTTO M. Sensorless full-digital PMSM drive with EKF estimation of speed and rotor position[J]. IEEE Trans, on Industry Electronics, 1999, 46(1):184-191.
[5] SHI K L, CHAN T F, HO S L. Speed estimation of an induction motor drive using an optimized extended kalman filter[J]. IEEE Trans. on Electronics, 2002, 49(1):124-133.
[6] SHI Y, SUN K, HUANG L. Online ldentification of permanent magnet flux based on extended kalman filter for IPMSM drive with position sensorless control [J]. Ndral Lron Ranaon on, 2012, 59(11): 4169-4178.
[7] 张猛, 肖曦, 李永东. 基于扩展卡尔曼滤波器的永磁同步电机转速和磁链观测器[J]. 中国电机工程学报, 2008, 27(36): 36-40.
[8] 安群涛, 孙力, 李波. 永磁同步电动机转速的变参数 EKF 估算方法[J]. 电机与控制学报, 2008, 11(6): 559-563.
[9] 陈振, 刘向东, 靳永强, 等. 采用扩展卡尔曼滤波磁链观测器的永磁同步电机直接转矩控制[J]. 中国电机工程学报, 2009, 28(33): 75-81.
[10] 尹忠刚,张瑞峰,钟彦儒,等.基于抗差扩展卡尔曼滤波器的永磁同步电机转速估计策略[J].控制理论与应用,2012,29(7):921-927.
[11] 冯尚明, 杨波. 基于优化新 EKF 的直线感应电动机速度估计[J]. 微特电机, 2009, 37(7): 20-23.
[12] 沈艳霞, 江俊, 纪志成. 基于遗传算法的无传感器永磁同步电机控制优化[J]. 南京航空航天大学学报, 2006, 38(B07): 128-131.
[13] ALANIS A Y, SIMETTI C, RICALDE L J, et al. A wind speed neural model with partical swarm optimization Kalman learning [C] //World Automation Congress (WAC) New York: IEEE Press, 2012: 1-5.
[14] 林国汉, 章兢, 刘朝华, 等. 改进粒子群算法优化扩展卡尔曼滤波器电机转速估计[J]. 计算机应用研究, 2013, 30(7): 2003-2006.
[15] 刘波.粒子群优化算法及其工程应用[M].北京:电子工业出版社,2010.
[16] 瞿高峰,陈淑燕.粒子群优化算法在交通信号配时中的应用[J]. 广西师范大学学报:自然科学版,2006,24(4):255-258.
[17] 张兴国,周东健,李成浩.基于粒子群-蚁群融合算法的移动机器人路径优化规划[J].江西师范大学学报:自然科学版,2014,38(3):274-277.
[18] 傅调平,陈建华,李刚强.基于动态自适应遗传算法的舰艇防空火力分配[J].广西师范大学学报:自然科学版,2010,28(3):187-190.
[19] 于鹏,王京.数据插值技术对基于遗传编程算法符号回归的影响研究[J].江西师范大学学报:自然科学版,2014,38(3):286-289.
[1] WANG Guoyu, HUANG Zhigong, DAI Ming. Fuzzy Control Research for Brushless DC Motor Basedon Improved Particle Swarm Algorithm [J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(2): 21-27.
[2] ZHAO Yi-min, HUANG Zhi-gong. Permanent Magnet Synchronous Motor Control System Based on Fuzzy Variable Step Size Neural Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(4): 20-24.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!