Journal of Guangxi Normal University(Natural Science Edition) ›› 2011, Vol. 29 ›› Issue (4): 73-78.

Previous Articles     Next Articles

Finite-time Terminal Sliding Mode Control for Singular Systems

ZHAO Wei-qi1, LIANG Jia-rong2, LI Xia1   

  1. 1.College of Mathematics and Information Science,Guangxi University,Nanning Guangxi 530004,China;
    2.College of Computer Science and Electronic Information Science,Guangxi University,Nanning Guangxi 530004,China
  • Received:2011-05-19 Published:2018-11-16

Abstract: In this paper,the finite-time terminal sliding modecontrol for a class of singular systems is studied.The singular systems are transformed into restricted equivalent forms by a nonsingular linear transformation.Usingthe method of Lyapunov function,a finite-time terminal sliding mode control strategy is proposed.A terminal sliding mode hypersurface and a controller are given correspondingly,such that the asymptotic stability of the closed-loop systemis guaranteed,and the motion of sliding mode is realized;simultaneously,the system state variables is converged to the equilibrium point in finite time.Finally,a numerical example is presented to illustrate the feasibility and effectiveness ofthe design.

Key words: singular systems, finite-time convergence, terminal sliding mode control, restricted equivalent, Lyapunov function

CLC Number: 

  • TP13
[1] DAI L Y.Singular control systems[M].Berlin:Springer-Verlag,1989:1-20.
[2] 杨冬梅,张庆灵,姚波.广义系统[M].北京:科学出版社,2004:1-40.
[3] 高为炳.变结构控制理论基础[M].北京:中国科学技术出版社,1990:1-50.
[4] ZAK M.Terminal attractors in neural networks[J].Neural Networks,1989,2(4):259-274.
[5] TANG Yu.Terminal sliding mode control for rigid robots[J].Automatica,1998,34(1):51-56.
[6] QIN Zhen-hua,HE Xiong-xiong.A robust terminal sliding mode adaptive control for robotmanipulators[J].Advanced Materials Research,2011,204-210:1978-1983.
[7] CHANG F J,CHANG E C,LIANG T J,et al.Digital-signal-processor-based DC/AC inverter with integral-compensation terminal sliding-mode control[J].IET Power Electron,2011,4(1):159-167.
[8] YU Shuang-he,YU Xing-huo,SHIRINZADEH B,et al.Continuous finite-time control for robotic manipulators with terminal sliding mode[J].Automatica,2005,41(11):1957-1964.
[9] MAN Zhi-hong,YU Xing-huo.Terminal sliding mode control of MIMOlinear systems[J].IEEE Transactions on Circuits and systems I:Fundamental Theory and Applications,1997,44(11):1065-1070.
[10] WANG Hua,HAN Zheng-zhi,XIE Qi-yue,et al.Finite-time chaos control via nonsigular terminal sliding mode control[J].Commun Nonlinear Sci Numersimulat,2009,14(6):2728-2733.
[11] GUO Ji-feng,GAO Cun-chen.Design of variable structure controller for uncertain in time-delay singular system[J].Journal of Harbin Instituteof Technology:New Series,2009,16(3):331-337.
[12] WU Li-gang,HO D W C.Sliding mode control of singular stochastichybrid systems[J].Automatic,2010,46(4):779-783.
[13] WU Li-gang,ZHENG Wei-xing.Passivity-based sliding mode controlof uncertain singular time-delay systems[J].Automatica,2009,45(9):2120-2127.
[14] 梁家荣,谭红艳,樊仲光.广义系统的快速终端滑模控制[J].电子科技大学学报,2011,40(1):11-15.
[15] 樊仲光,梁家荣,肖剑.广义系统的有限时间滑模运动变结构控制[J].信息与控制,2010,39(4):418-422.
[1] ZHENG Tao, ZHOU Xinran, ZHANG Long. Global Asymptotic Stability of Predator-Competition-Cooperative Hybrid Population Models of Three Species [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(5): 64-70.
[2] WU Lei, YANG Li, LI Qishang, XIAO Huapeng. Chaos Control of Synchronous Reluctance Motor Based on Small Gain Theorem [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 44-51.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!