Journal of Guangxi Normal University(Natural Science Edition) ›› 2011, Vol. 29 ›› Issue (2): 45-49.
Previous Articles Next Articles
MA Yun-ling1,2, GENG Xian-guo1
CLC Number:
[1] TODA M.Theory of nonlinear lattices,soliton state science[M].New York:Springer-Verlag,1981. [2] NEWELL A C.Solitons in mathematics and physics[M].Philadelphia:SIAM,1985. [3] ABLOWITZ M J,SEGUR H.Solitons and the inverse scattering transform[M].Philadelphia:SIAM,1981. [4] FADDEEV L D,TAKHTAJAN I A.Hamiltonian methods in the theory of solitons[M].Berlin:Springer,1987. [5] MATVEEV V B,SALLE A M.Darboux transformation and solitons[M].Berlin:Springer,1991. [6] CAO Ce-wen.Nonlinearization of lax system for the AKNS hierarchy[J].Sci China A,1990,33:528-542. [7] HIROTA R.The direct method in soliton theory[M].Cambridge:CambridgeUniversity Press,2004. [8] MA Yun-ling,GENG Xian-guo.A coupled nonlinear schro¨dinger type equation and its explicit solutions[J].Chaos,Solitions and Fractals,2009,42:2949-2953. [9] 马云苓,杜殿楼.CKdV-Bargmann系统的Lie-Poisson结构[J].广西师范大学学报:自然科学版,2005,23(3):38-40. [10] MA Yun-ling.Algebra-geometric constructions of a (2+1)-dimensional discrete integrable model[J].J Phys A:Math Theor,2010,43:32-52. [11] GENG Xian-guo,MA Yun-ling.N-soliton solution and its Wronskian form of a (3+1)-dimensional nonlinear evolution equation[J].PhysicsLetters A,2007,369:285-289. [12] SU Ting,GENG Xian-guo,MA Yun-ling.Wronskian form of N-soliton solution or the (2+1)-dimensional breaking soliton equation[J].Chin Phys Lett,2007,24:305-307. [13] CAO Ce-wen,WU Yong-tang,GENG Xian-guo.Relation between the Kadometsev-Petviashvili equation and the confocal involutive system[J].J Math Phys,1998,40:3948-3970. [14] DU Dian-lou.Complex form,reduction and Lie-Poisson structurefor the nonlinearized spectral problem of the Heisenberg hierarchy[J].Physica A,2002,303:439-456. |
[1] | ZHOU Jian-jun, HONG Bao-jian, LU Dian-chen. New Jacobi Elliptic Functions Solutions of the Schrödinger-Boussinesq Equations [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(1): 11-15. |
[2] | ZHANG Jie, LI Xiaojun. Existence of Uniform Random Attractor for NonautonomousStochastic Reaction-diffusion Equations on Unbounded Domains [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(2): 134-143. |
|