Journal of Guangxi Normal University(Natural Science Edition) ›› 2011, Vol. 29 ›› Issue (2): 45-49.

Previous Articles     Next Articles

Explicit Solutions of Two (2+1)-dimensional Soliton Equations

MA Yun-ling1,2, GENG Xian-guo1   

  1. 1.Department of Mathematics,Zhengzhou University,Zhengzhou Henan 450052,China;
    2.Department of Mathematics,Shangqiu Normal University,Shangqiu Henan 476000,China
  • Received:2011-01-05 Published:2018-11-19

Abstract: Using bilinear method and with the aid of the (1+1)-dimensional equation,explicit solutions of two (2+1)-dimensional soliton equations are discussed and studied.Some explicit solutions of these equations areobtained,including one-soliton solution,two-soliton solution and N-soliton solution.A systematic procedure is given in detail to solve N-solitonsolution of the (2+1)-dimensional soliton equation.

Key words: (2+1)-dimensional soliton equation, bilinear method, bilinear form, soliton solution

CLC Number: 

  • O175.29
[1] TODA M.Theory of nonlinear lattices,soliton state science[M].New York:Springer-Verlag,1981.
[2] NEWELL A C.Solitons in mathematics and physics[M].Philadelphia:SIAM,1985.
[3] ABLOWITZ M J,SEGUR H.Solitons and the inverse scattering transform[M].Philadelphia:SIAM,1981.
[4] FADDEEV L D,TAKHTAJAN I A.Hamiltonian methods in the theory of solitons[M].Berlin:Springer,1987.
[5] MATVEEV V B,SALLE A M.Darboux transformation and solitons[M].Berlin:Springer,1991.
[6] CAO Ce-wen.Nonlinearization of lax system for the AKNS hierarchy[J].Sci China A,1990,33:528-542.
[7] HIROTA R.The direct method in soliton theory[M].Cambridge:CambridgeUniversity Press,2004.
[8] MA Yun-ling,GENG Xian-guo.A coupled nonlinear schro¨dinger type equation and its explicit solutions[J].Chaos,Solitions and Fractals,2009,42:2949-2953.
[9] 马云苓,杜殿楼.CKdV-Bargmann系统的Lie-Poisson结构[J].广西师范大学学报:自然科学版,2005,23(3):38-40.
[10] MA Yun-ling.Algebra-geometric constructions of a (2+1)-dimensional discrete integrable model[J].J Phys A:Math Theor,2010,43:32-52.
[11] GENG Xian-guo,MA Yun-ling.N-soliton solution and its Wronskian form of a (3+1)-dimensional nonlinear evolution equation[J].PhysicsLetters A,2007,369:285-289.
[12] SU Ting,GENG Xian-guo,MA Yun-ling.Wronskian form of N-soliton solution or the (2+1)-dimensional breaking soliton equation[J].Chin Phys Lett,2007,24:305-307.
[13] CAO Ce-wen,WU Yong-tang,GENG Xian-guo.Relation between the Kadometsev-Petviashvili equation and the confocal involutive system[J].J Math Phys,1998,40:3948-3970.
[14] DU Dian-lou.Complex form,reduction and Lie-Poisson structurefor the nonlinearized spectral problem of the Heisenberg hierarchy[J].Physica A,2002,303:439-456.
[1] ZHOU Jian-jun, HONG Bao-jian, LU Dian-chen. New Jacobi Elliptic Functions Solutions of the Schrödinger-Boussinesq Equations [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(1): 11-15.
[2] ZHANG Jie, LI Xiaojun. Existence of Uniform Random Attractor for NonautonomousStochastic Reaction-diffusion Equations on Unbounded Domains [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(2): 134-143.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!