Journal of Guangxi Normal University(Natural Science Edition) ›› 2011, Vol. 29 ›› Issue (2): 40-44.

Previous Articles     Next Articles

SS Chaotic Set in Set of Non-recurrent Points

DENG Jin-hong, ZHAO Jun-ling   

  1. College of Mathematical Science,Guangxi Normal University,Guilin Guangxi 541004,China
  • Received:2011-01-05 Published:2018-11-19

Abstract: This paper considers the existence of uncountable SSchaotic sets in Σ-R(σ) about σ:Σ→Σ,discusses how to divert the result about σ to the continuous map f:X→X,and explains the use with someexamples in the compact system (X,f).

Key words: SS chaotic set, recurrent points, shift invariant set, pseudo-shift invariant set

CLC Number: 

  • O19
[1] SCHWEIZER B,SMITAL J.Measure of chaos and a spectral decomposition of dynamical systems on the interval[J].Trans Amer Soc,1994,334(2):737-754.
[2] 廖公夫,范钦杰.拓扑熵为零且Schweizer-Smital混沌的极小子转移[J].中国科学:A辑,1997,27(9):769-773.
[3] 廖公夫,王立冬.几乎周期性与SS混沌集[J].数学年刊,2002,23A(6):685-692.
[4] 王立冬,楚振艳,廖公夫.Σ上的非弱几乎周期的回复点集和SS混沌集[J].数学物理学报,2006,26A(5):778-784.
[5] 周作领.符号动力系统[M].上海:上海教育出版社,1997:20,6.
[6] JAROSLAV S,MARTA S.Distributional chaos for triangular maps[J].Chaos,Solitons and Fractals,2004,21:1125-1128.
[7] DEVANEY R L.An introduction to chaotic dynamical systems[M].Menlo Park,CA:The Benjamin/Cummings Publish Co.Inc.,1986.
[8] BLOCK L S,COPPEL W A.Dynamics in one dimension[M].New York:Spring-Verlag,1992.
[1] LIU Long-sheng, KANG Yun-lian, ZHAO Jun-ling. Li-Yorke Chaotic Set and ω-Chaotic Set of the Generalized Symbolic Dynamical Systems [J]. Journal of Guangxi Normal University(Natural Science Edition), 2014, 32(2): 75-81.
[2] KANG Yun-lian, LIU Long-sheng, ZHAO Jun-ling. Distributional Chaotic Property of the Factor System of Symbolic Dynamical System [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(4): 66-70.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!