Journal of Guangxi Normal University(Natural Science Edition) ›› 2010, Vol. 28 ›› Issue (3): 104-108.
Previous Articles Next Articles
ZOU Chao1, ZHENG En-hui1, REN Yu-ling2, ZHANG Ying3, FAN Yu-gang4
CLC Number:
[1] VAPNIK V N.The nature of statistical learning theory[M].New York:Springer-Verlag,1999:138-167. [2] 王修信,秦丽梅,罗涟玲,等.提高城市TM图像分类精度的两种方法比较[J].广西师范大学学报:自然科学版,2009,27(4):19-22. [3] DOMINGOS P.Metacost:a general method for making classifiers cost-sensitive[C]//Proceedings of the 5th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York:ACM Press,1999:155-164. [4] SáNCHEZ D,VILA M A,CERDA L,et al.Association rules applied tocreditcard fraud detection[J].Expert Systems with Applications,2009,36(2):3630-3640. [5] SRIVASTAVA A,KUNDU A,SURAL S,et al.Credit card fraud detectionusing hidden Markov model[J].IEEE Transactions on Dependable and Secure Computing,2008,5(1):37-48. [6] 周生明,廖元秀.Cost-Sensitive学习的一个新课题[J].广西师范大学学报:自然科学版,2007,25(4):55-58. [7] ELKAN C.The foundations of cost-sensitive learning[C]//Proceedings of the 7th International Joint Conference on Artificial Intelligence.California:AAAIPress,2001:937-978. [8] LING Xiao-feng,SHENG V S.A comparative study of cost-sensitive classifiers[J].Chinese Journal of Computers,2007,30(8):1203-1211. [9] ZHOU Zhi-hua,LIU Xu-ying.On multi-class cost-sensitive learning[C]//Proceedings of the 21st National Conference on Artificial Intelligence.California:AAAI Press,2006,1:567-572. [10] LIU Xu-ying,ZHOU Zhi-hua.The influence of class imbalance on cost-sensitive learning:an empirical study[C]//Proceedings of the Sixth International Conference on Data Mining.Las Vegas:CSREA Press,2006:970-974. [11] FUMERA G,ROLI F.Cost-sensitive learning in support vector machines[C]//Proceedings of the Ⅷ Convegno Associazione Italiana per L' Intelligenza Artificiale.Bologna:Pitagora Editrice,2002. [12] CHOW C K.On optimum recognition error and reject tradeoff[J].IEEE Transactions Information Theory,1970,16(1):41-46. [13] FOGGIA P,SANSONE C,TORTORELLA F,et al.Multi-classification:reject criteria for the Bayesian combiner[J].Pattern Recognition,1999,32:1435-1447. [14] STEFANO C D,SANSONE C,VENTO M.To reject or not to reject:thatis the question-answer in case of neural classifiers[J].IEEE Transactions on SMC,2008,30(1):84-94. [15] LANDGREBE T C W,TAX D M J,PACLíK P,et al.The interaction between classification and reject performance for distance-based reject-option classifiers[J].Pattern Recognition Letters,2006,27(8):908-917. [16] ZHENG En-hui,ZOU Chao,SUN Jian,et al.SVM-based credit card fraud detection with reject cost and class-dependent error cost[C]//Proceedings of thePAKDD' 09 Workshop:Data Mining When Classes are Imbalanced and Errors Have Cost.Rangsit Campus:Thammasat Printing House,2009:50-58. [17] AHA D.UCI machine learning datasets[OL/DB].(2009-09-09).http://archive.ics.uci.edu/ml/datasets.html. |
[1] | DAI Jiayang, ZHOU Dong. Research on Cross-Language Information Retrieval Method Based on Multi-task Learning [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(6): 69-81. |
[2] | WANG Ximin, YUAN Jie, KOU Qiaoyuan. An Improved Slime Mould Algorithm Based on Multi-Strategy [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(6): 98-108. |
[3] | XIAO Fei, KANG Zengyan, WANG Weihong. Two Algorithms for Prognosis of DenitrificationConditions of A2/O Technology [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(6): 173-184. |
[4] | ZHANG Shichao, LI Jiaye. Knowledge Matrix Representation [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 36-48. |
[5] | DU Jinfeng, WANG Hairong, LIANG Huan, WANG Dong. Progress of Cross-modal Retrieval Methods Based on Representation Learning [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 1-12. |
[6] | PENG Tao, TANG Jing, HE Kai, HU Xinrong, LIU Junping, HE Ruhan. Emotion Recognition Based on Multi-gait Feature Fusion [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 104-111. |
[7] | MA Xinna, ZHAO Men, QI Lin. Fault Diagnosis Based on Spiking Convolution Neural Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 112-120. |
[8] | JIANG Rui, XU Juan, LI Qiang. A Prediction Method of Bearing Remaining Useful Life Based on Cross Domain Mean Approximation [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 121-131. |
[9] | DUAN Meiling, PAN Julong. Wearable Fall Detection Based on Bi-directional LSTM Neural Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 141-150. |
[10] | KONG Yayu, LU Yujie, SUN Zhongtian, XIAO Jingxian, HOU Haochen, CHEN Tingwei. Research on Graph Neural Network Recommendation Algorithms for Reinforcing Current Interest [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 151-160. |
[11] | WU Jun, OUYANG Aijia, ZHANG Lin. Phosphorylation Site Prediction Model Based on Multi-head Attention Mechanism [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 161-171. |
[12] | CHEN Gaojian, WANG Jing, LI Qianwen, YUAN Yunjing, CAO Jiachen. Data-driven Method for Automatic Machine Learning Pipeline Generation [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 185-193. |
[13] | YANG Di, FANG Yangxin, ZHOU Yan. New Category Classification Research Based on MEB and SVM Methods [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 57-67. |
[14] | TANG Fengzhu, TANG Xin, LI Chunhai, LI Xiaohuan. Dynamic Task Allocation Method for UAVs Based on Deep Reinforcement Learning [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(6): 63-71. |
[15] | LU Kaifeng, YANG Yilong, LI Zhi. A Web Service Classification Method Using BERT and DPCNN [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(6): 87-98. |
|