Journal of Guangxi Normal University(Natural Science Edition) ›› 2022, Vol. 40 ›› Issue (6): 69-81.doi: 10.16088/j.issn.1001-6600.2022022201
Previous Articles Next Articles
DAI Jiayang, ZHOU Dong*
CLC Number:
[1] 周栋, 赵文玉, 伍璇, 等. 个性化跨语言信息检索中结果重排序研究[J].计算机工程与科学, 2017, 39(10): 1923-1929. DOI: 10.3969/j.issn.1007-130X.2017.10.022. [2] 王灿辉, 张敏, 马少平. 自然语言处理在信息检索中的应用综述[J].中文信息学报, 2007, 21(2): 35-45. DOI: 10.3969/j.issn.1003-0077.2007.02.006. [3] 苏祺, 昝红英, 胡景贺, 等. 词性标注对信息检索系统性能的影响[J].中文信息学报, 2005, 19(2): 58-65. DOI: 10.3969/j.issn.1003-0077.2005.02.009. [4] PANG L, LAN YY, Guo J F, et al. Text matching as image recognition[J].Proceedings of the AAAI Conference on Artificial Intelligence, 2016, 30(1): 2793-2799. DOI: 10.1609/aaai.v30i1.10341. [5] XIONG C Y, DAIZ Y, CALLAN J, et al. End-to-end neural ad-hoc ranking with kernel pooling[C]// Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval.New York, NY: ACM, 2017: 55-64. DOI: 10.1145/3077136.3080809. [6] GUO J F, FANY X, PANGL, et al. A deep look into neural ranking models for information retrieval[J].Information Processing & Management, 2020, 57(6): 102067. DOI: 10.1016/j.ipm.2019.102067. [7] YU P X, ALLAN J. A study of neural matching models for cross-lingual IR[C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, NY: ACM, 2020: 1637-1640. DOI: 10.1145/3397271.3401322. [8] BONAB H, SARWAR S M, ALLAN J. Training effective neural CLIR by bridging the translation gap[C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, NY: ACM, 2020: 9-18. DOI: 10.1145/3397271.3401035. [9] 彭晓娅, 周栋. 跨语言词向量研究综述[J].中文信息学报, 2020, 34(2): 1-15, 26. DOI: 10.3969/j.issn.1003-0077.2020.02.001. [10] 李岩, 郭军军, 余正涛, 等.基于词映射构建伪查询改善低资源跨语言信息检索研究[J].山西大学学报(自然科学版), 2022, 45(2): 322-331. DOI: 10.13451/j.sxu.ns.2021106. [11] 戚园园. 基于特征表示学习的文本检索研究[D].北京: 北京邮电大学, 2021. DOI: 10.26969/d.cnki.gbydu.2021.000110. [12] ZHANG Y, YANG Q. An overview of multi-task learning[J]. National Science Review, 2018, 5(1): 30-43. DOI: 10.1093/nsr/nwx105. [13] LIU X D, GAOJ F, HEX D, et al. Representation learning using multi-task deep neural networks for semantic classification and information retrieval[C]// Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg, PA: Association for Computational Linguistics, 2015: 912-921. DOI: 10.3115/v1/N15-1092. [14] NIE J Y, SIMARD M, ISABELLE P, et al. Cross-language information retrieval based on parallel texts and automatic mining of parallel texts from the web[C]// Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, NY: ACM, 1999: 74-81. DOI: 10.1145/312624.312656. [15] ELAYEB B, ROMDHANE W B, SAOUD N B B. Towards a new possibilistic query translation tool for cross-language information retrieval[J]. Multimedia Tools and Applications, 2018, 77(2): 2423-2465. DOI: 10.1007/s11042-017-4398-2. [16] 黄名选, 蒋曹清.基于项权值排序挖掘的跨语言查询扩展[J].电子学报, 2020, 48(3): 568-576. DOI: 10.3969/j.issn.0372-2112.2020.03.021. [17] TURE F, LIN J. Flat vs. hierarchical phrase-based translation models for cross-language information retrieval[C]// Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, NY: ACM, 2013: 813-816. DOI: 10.1145/2484028.2484137. [18] AZARBONYAD H, SHAKERY A, FAILI H. A learning to rank approach for cross-language information retrieval exploiting multiple translation resources[J]. Natural Language Engineering, 2019, 25(3): 363-384. DOI: 10.1017/S1351324919000032. [19] 梁少博, 朱慧宁, 吴丹.基于公共数字文化资源命名实体识别与翻译的跨语言信息检索研究[J].图书馆建设, 2022(1): 87-95. DOI: 10.19764/j.cnki.tsgjs.20211994. [20] CHANDRA G, DWIVEDI S K. Assessing query translation quality using back translation in Hindi-English CLIR[J]. International Journal of Intelligent Systems and Applications, 2017, 9(3): 51-59. DOI: 10.5815/ijisa.2017.03.07. [21] 马路佳, 赖文, 赵小兵.基于跨语言词向量模型的蒙汉查询词扩展方法研究[J].中文信息学报, 2019, 33(6): 27-34. DOI: 10.3969/j.issn.1003-0077.2019.06.004. [22] LITSCHKO R, GLAVAŠ G, PONZETTO S P, et al. Unsupervised cross-lingual information retrieval using monolingual data only[C]// The 41st International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, NY: ACM, 2018: 1253-1256. DOI: 10.1145/3209978.3210157. [23] 邹小芳, 王明文, 左家莉, 等. 新的基于中间语义的多语言信息检索模型[J]. 小型微型计算机系统, 2010, 31(4): 696-701. [24] VULIC′ I, DE SMET W, MOENS M F. Cross-language information retrieval models based on latent topic models trained with document-aligned comparable corpora[J]. Information Retrieval, 2013, 16(3): 331-368. DOI: 10.1007/s10791-012-9200-5. [25] HUO Z L, WU J F, LU Y, et al. A topic-based cross-language retrieval model with PLSA and TF-IDF[C]// 2018 IEEE 3rd International Conference on Big Data Analysis(ICBDA). Piscataway, NJ: IEEE, 2018: 340-344. DOI: 10.1109/ICBDA.2018.8367704. [26] GLAVAŠ G, VULIC′ I. Zero-shot language transfer for cross-lingual sentence retrieval using bidirectional attention model[C]// Advances in Information Retrieval: LNCS Volume 11437. Cham: Springer, 2019: 523-538. DOI: 10.1007/978-3-030-15712-8_34. [27] JIANG Z L, EL-JAROUDI A, HARTMANN W, et al. Cross-lingual information retrieval with BERT[C]// Proceedings of the Workshop on Cross-Language Search and Summarization of Text and Speech (CLSSTS2020).Paris: European Language Resources Association, 2020: 26-31. [28] 曲琳琳.查询翻译方法研究: 以汉英跨语言信息检索为例[J].情报科学, 2021, 39(8): 132-138, 193. DOI: 10.13833/j.issn.1007-7634.2021.08.017. [29] 叶雪,梁娟.基于平行语料库的英汉跨语言信息检索设计研究[J].电子设计工程,2021,29(17):135-138.DOI: 10.14022/j.issn1674-6236.2021.17.029. [30] OARD D W, HE D Q, WANG J Q. User-assisted query translation for interactive cross-language information retrieval[J]. Information Processing & Management, 2008, 44(1): 181-211. DOI: 10.1016/j.ipm.2006.12.009. [31] YANG Z C, YANG D Y, DYER C, et al. Hierarchical attention networks for document classification[C]// Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg, PA: Association for Computational Linguistics, 2016: 1480-1489. DOI: 10.18653/v1/N16-1174. |
[1] | YANG Zhou, FAN Yixing, ZHU Xiaofei, GUO Jiafeng, WANG Yue. Survey on Modeling Factors of Neural Information Retrieval Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(2): 1-12. |
[2] | GE Yifei, ZHENG Yanbin. Private Information Retrieval Schemes with Erasure-correcting or Error-correcting Properties [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(3): 33-44. |
[3] | YU Chuanming,LI Haonan,AN Lu. Analysis of Text Emotion Cause Based on Multi-task Deep Learning [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(1): 50-61. |
[4] | LIN Yuan, LIU Haifeng, LIN Hongfei, XU Kan. Group Ranking Methods with Loss Function Incorporation [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(1): 62-70. |
[5] | LU·· Xue-qiang, SHU Yan, SUN Li-hua, CHENG Tao. Phrase of “V+N1+N2” Structure in Search Engine Query Logs [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(1): 109-115. |
[6] | FANG Lu, GE Yun-dong, HONG Yu, YAO Jian-ming. Acquisition of Comparable and Its Application in CLIR [J]. Journal of Guangxi Normal University(Natural Science Edition), 2010, 28(3): 126-130. |
[7] | LI Ying, LIU Jing-bo. Academic Information Retrieval System Based on “Structured Digital Object” [J]. Journal of Guangxi Normal University(Natural Science Edition), 2010, 28(1): 82-87. |
[8] | LUO Wen-bing, WU Run-xiu, WANG Ming-wen, ZHU Ying-ting, XIONG Chao. Personalized Recommendation Model Based on Results Clustering Analysis [J]. Journal of Guangxi Normal University(Natural Science Edition), 2010, 28(1): 113-116. |
|