Journal of Guangxi Normal University(Natural Science Edition) ›› 2025, Vol. 43 ›› Issue (5): 41-51.doi: 10.16088/j.issn.1001-6600.2024090603

• Physics and Electronic Engineering • Previous Articles     Next Articles

A Combined Ultra-load Forecasting Model Based on CEEMD with Different Characteristics

SHANG Liqun*, JIA Danming, AN Di, WANG Junkun   

  1. School of Electrical and Control Engineering, Xi'an University of Science and Technology, Xi'an Shaanxi 710054, China
  • Received:2024-09-06 Revised:2025-01-17 Online:2025-09-05 Published:2025-08-05

Abstract: Electric load forecasting is critical for power dispatch and system security. A combined forecasting model is proposed for ultra-short-term load forecasting, integrating Complementary Ensemble Empirical Mode Decomposition (CEEMD) with machine learning and intelligent optimization algorithms. The model first decomposes the original data using CEEMD, followed by the use of permutation entropy (PE) thresholds to classify the load components for separate forecasting methods. Bidirectional Long Short-Term Memory (BiLSTM) is applied to predict high-frequency components, while low-frequency components are predicted using Hybrid Kernel Extreme Learning Machine (HKELM) optimized by the Snow Ablation Optimizer (SAO). The final forecast is obtained by summing the predicted components. Experimental results show that the model achieves root mean square error of 61.61 kW, mean absolute error of 43.91 kW, and mean absolute percentage error of 0.38%, significantly outperforming traditional models. These results demonstrate that the model effectively captures the inherent features of the data and combines the advantages of various forecasting methods, providing high accuracy and generalizability for ultra-short-term load forecasting.

Key words: short-term electric power load forecasting, CEEMD, permutation entropy, bidirectional long short-term memory (BiLSTM), hybrid kernel extreme learning machine (HKELM), intelligent optimization algorithm

CLC Number:  TM 715
[1] 康重庆, 夏清, 张伯明. 电力系统负荷预测研究综述与发展方向的探讨[J]. 电力系统自动化, 2004, 28(17): 1-11. DOI: 10.3321/j.issn:1000-1026.2004.17.001.
[2] AHMAD N, GHADI Y, ADNAN M, et al. Load forecasting techniques for power system: research challenges and survey[J]. IEEE Access, 2022, 10: 71054-71090. DOI: 10.1109/ACCESS.2022.3187839.
[3] 杨佳泽, 王灿, 王增平. 新型电力系统背景下的智能负荷预测算法研究综述[J]. 华北电力大学学报(自然科学版), 2025, 52(3): 54-67.
[4] 刘杰, 从兰美, 夏远洋, 等. 基于DBO-VMD和IWOA-BILSTM神经网络组合模型的短期电力负荷预测[J]. 电力系统保护与控制, 2024, 52(8): 123-133. DOI: 10.19783/j.cnki.pspc.231402.
[5] 杨维熙, 刘勇, 舒勤. 基于补充集合经验模态分解的短期负荷预测模型[J]. 电网技术, 2022, 46(9): 3615-3623. DOI: 10.13335/j.1000-3673.pst.2021.2583.
[6] 滕陈源, 丁逸超, 张有兵, 等. 基于VMD-Informer-BiLSTM模型的超短期光伏功率预测[J]. 高电压技术, 2023, 49(7): 2961-2971. DOI: 10.13336/j.1003-6520.hve.20222003.
[7] 李俊良, 焦润海, 王双坤, 等. 一种基于误差在线更新的集成负荷预测模型[J]. 中国电机工程学报, 2023, 43(4): 1402-1413. DOI: 10.13334/j.0258-8013.pcsee.212794.
[8] BAHRAMI S, HOOSHMAND R A, PARASTEGARI M. Short term electric load forecasting by wavelet transform and grey model improved by PSO (particle swarm optimization) algorithm[J]. Energy, 2014, 72: 434-442. DOI: 10.1016/j.energy.2014.05.065.
[9] 商立群, 李洪波, 侯亚东, 等. 基于VMD-ISSA-KELM的短期光伏发电功率预测[J]. 电力系统保护与控制, 2022, 50(21): 138-148. DOI: 10.19783/j.cnki.pspc.220140.
[10] 蔡曜, 司玉辉, 王玉琢, 等. 挠性陀螺EMD-ARIMA漂移模型设计与应用[J]. 北京航空航天大学学报, 2024, 50(11): 3434-3444. DOI: 10.13700/j.bh.1001-5965.2022.0871.
[11] 邵必林, 纪丹阳. 基于VMD-SE的电力负荷分量的多特征短期预测[J]. 中国电力, 2024, 57(4): 162-170.
[12] 马志侠, 张林鍹, 邱朝洁, 等. 基于CEEMD-SSA-LSTM的园区综合能源系统两阶段优化调度[J]. 高电压技术, 2023, 49(4): 1430-1440. DOI: 10.13336/j.1003-6520.hve.20221303.
[13] 刘东, 周莉, 郑晓亮. 基于SA-DBN的超短期电力负荷预测[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 21-33. DOI: 10.16088/j.issn.1001-6600.2020070101.
[14] HOCHREITER S,SCHMIDHUBER J. Long Short-Term Memory[J]. Neural Computation,1997,9(8),1735-1780. DOI: 10.1162/neco.1997.9.8.1735.
[15] LIU Z S, YANG J F. Research on short-term load forecasting based on GWO-BILSTM[J]. Journal of Physics: Conference Series, 2022, 2290(1): 012100. DOI: 10.1088/1742-6596/2290/1/012100.
[16] RAFIEI M, NIKNAM T, AGHAEI J, et al. Probabilistic load forecasting using an improved wavelet neural network trained by generalized extreme learning machine[J]. IEEE Transactions on Smart Grid, 2018, 9(6): 6961-6971. DOI: 10.1109/TSG.2018.2807845.
[17] SHARIATI M, MAFIPOUR M S, GHAHREMANI B, et al. A novel hybrid extreme learning machine-grey wolf optimizer (ELM-GWO) model to predict compressive strength of concrete with partial replacements for cement[J]. Engineering with Computers, 2022, 38(1): 757-779. DOI: 10.1007/s00366-020-01081-0.
[18] 王延峰, 曹育晗, 孙军伟. 基于多策略改进金豺算法优化LSTM的短期电力负荷预测[J]. 电力系统保护与控制, 2024, 52(14): 95-102. DOI: 10.19783/j.cnki.pspc.231431.
[19] 商立群, 黄辰浩, 侯亚东, 等. 采用特征优选和优化深层核极限学习机的短期风电功率预测[J]. 西安交通大学学报, 2023, 57(1): 66-77. DOI: 10.7652/xjtuxb202301007.
[20] DENG L Y, LIU S Y. Snow ablation optimizer: a novel metaheuristic technique for numerical optimization and engineering design[J]. Expert Systems with Applications, 2023, 225: 120069. DOI: 10.1016/j.eswa.2023.120069.
[21] SHERSTINSKY A. Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network[J]. Physica D: Nonlinear Phenomena, 2020, 404: 132306. DOI: 10.1016/j.physd.2019.132306.
[22] 商立群, 李洪波, 侯亚东, 等. 基于特征选择和优化极限学习机的短期电力负荷预测[J]. 西安交通大学学报, 2022, 56(4): 165-175. DOI: 10.7652/xjtuxb202204018.
[23] SU H, ZHAO D, HEIDARI A A, et al. RIME: a physics-based optimization[J]. Neurocomputing, 2023, 532: 183-214. DOI: 10.1016/j.neucom.2023.02.010.
[1] CHEN Yu, CHEN Lei, ZHANG Yi, ZHANG Zhirui. Wind Speed Prediction Model Based on QMD-LDBO-BiGRU [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 38-57.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHONG Qiao, CHEN Shenglong, TANG Congcong. Hydrogel Technology for Microalgae Collection: Status Overview, Challenges and Development Analysis[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 16 -29 .
[2] SHI Huilu, MO Yanhua, LUO Haiyu, MA Jiangming. Inhibitory Activity of Ethyl Acetate Extracts of Loropetalum chinense against Pathogens[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(1): 1 -8 .
[3] HE Qing, LI Dong, LUO Siyuan, HE Yudong, LI Biao, WANG Qiang. Research Progress in Ultra-wideband Rydberg Atomic Antenna Technology[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(2): 1 -19 .
[4] HUANG Renhui, ZHANG Ruifeng, WEN Xiaohao, BI Jinjie, HUANG Shoulin, LI Tinghui. Complex-value Covariance-based Convolutional Neural Network for Decoding Motor Imagery-based EEG Signals[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(3): 43 -56 .
[5] TIAN Sheng, XIONG Chenyin, LONG Anyang. Point Cloud Classification Method of Urban Roads Based on Improved PointNet++[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 1 -14 .
[6] LI Zongxiao, ZHANG Jian, LUO Xinyue, ZHAO Yifei, LU Fei. Research on Arrival Trajectory Prediction Based on K-means and Adam-LSTM[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 15 -23 .
[7] SONG Mingkai, ZHU Chengjie. Research on Fault Location of Distribution Network Based on H-WOA-GWO and Region Correction Strategies[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 24 -37 .
[8] HAN Shuo, JIANG Linfeng, YANG Jianbin. Attention-based PINNs Method for Solving Saint-Venant Equations[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 58 -68 .
[9] LI Zhixin, KUANG Wenlan. Fine-grained Image Classification Combining Adaptive Spatial Mutual Attention and Feature Pair Integration Discrimination[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 69 -82 .
[10] SHI Tianyi, NAN Xinyuan, GUO Xiangyu, ZHAO Pu, CAI Xin. Improved ConvNeXt-based Algorithm for Apple Leaf Disease Classification[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 83 -96 .