Journal of Guangxi Normal University(Natural Science Edition) ›› 2025, Vol. 43 ›› Issue (2): 207-220.doi: 10.16088/j.issn.1001-6600.2024061801

• Medicinal Resources Research • Previous Articles     Next Articles

Sophoridine Derivative Against Liver Cancer Cell Migration and Invasion

WU Lichuan1,2, TAN Zhenkai1,2, QIN Yehao1,2, ZHAO Xuqi1,2, XIE Yuxin1,2, HUANG Liyu1,2, WEI Jinrui3*   

  1. 1. School of Medicine, Guangxi University, Nanning Guangxi 530004, China;
    2. Guangxi Key Laboratory of Special Biomedicine (Guangxi University), Nanning Guangxi 530004, China;
    3. Institute of Traditional Chinese and Zhuang-Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning Guangxi 530200, China
  • Received:2024-06-18 Revised:2024-07-11 Online:2025-03-05 Published:2025-04-02

Abstract: This study comprehensively applies network pharmacology, bioinformatics, molecular docking, molecular dynamics, transcriptomics, and in vitro experiments to explore the effects and mechanisms of an indole sophoridine derivative containing ester group on the migration and invasion of liver cancer cells. The potential targets of this derivative were retrieved by using PharmMapper, Super-PRED, Swisstarget, and Targetnet databases. Liver cancer metastasis related genes were determined through differential expression analysis. The anti-liver cancer metastasis targets of this derivative were identified by taking intersection between predicted targets of this derivative and liver cancer metastasis related genes. GO/KEGG enrichment analysis was conducted to predict the potential signaling pathways of this derivative. Core targets of this derivative were identified via using protein-protein interaction analysis. Subsequently, molecular docking and molecular dynamics were involved to reveal the potential interaction between this derivative could core target. Furthermore, transcriptome sequencing was performed to obtain differentially expressed genes caused by this derivative. Finally, western blot assays were conducted to validate the effects of this derivative on MAPK pathway. The results showed that this derivative could significantly inhibit the migration and invasion of liver cancer cells. A total of 47 potential liver cancer metastasis related targets were predicted for this derivative, including 5 core targets: STAT3, PPARG, MAP2K1, CDK4, AKT3. The MAPK pathway was significantly enriched in the analysis of predicted genes and differentially expressed genes caused by this derivative. Molecular docking and molecular dynamics simulations also showed that this derivative had a high binding affinity with the core target MAP2K1 (a key node of the MAPK pathway). The results of western blot showed that under this derivative treatment, the core member of the MAPK pathway, p-Erk1/2 protein expression, was downregulated. Conclusion: this indole sophorodine derivative inhibits the migration and invasion of liver cancer cells by reducing the activity of the MAPK/ERK pathway.

Key words: liver cancer, cells migration and invasion, sophoridine derivative 6j, network pharmacology, molecular docking, molecular dynamics, MAPK pathway

CLC Number:  R285
[1] BRAY F, LAVERSANNE M, SUNG H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA: a Cancer Journal for Clinicians, 2024, 74(3): 229-263. DOI: 10.3322/caac.21834.
[2] ANWANWAN D, SINGH S K, SINGH S, et al. Challenges in liver cancer and possible treatment approaches[J]. Biochimica et Biophysica Acta(BBA):Reviews on Cancer, 2020, 1873(1): 188314. DOI: 10.1016/j.bbcan.2019.188314.
[3] CHEN S Z, CAO Q Q, WEN W, et al. Targeted therapy for hepatocellular carcinoma: Challenges and opportunities[J]. Cancer Letters, 2019, 460: 1-9. DOI: 10.1016/j.canlet.2019.114428.
[4] 张明发,沈雅琴.槐定碱的抗肿瘤药理作用研究进展[J].药物评价研究,2021,44(2):452-460.DOI: 10.7501/j.issn.1674-6376.2021.02.031.
[5] 范秋雨,武建文,李春晓,等.苦豆子抗炎机制的网络药理学分析及试验验证[J].中国畜牧兽医,2023,50(7): 2951-2965.DOI: 10.16431/j.cnki.1671-7236.2023.07.035.
[6] 唐琼,刘鳐,王宝君,等.槐定碱抗病毒作用的研究进展[J].中国药理学通报,2023,39(6):1030-1035.DOI: 10.12360/CPB202202014.
[7] ZHAO Z W, ZHANG D K, WU F Z, et al. Sophoridine suppresses lenvatinib-resistant hepatocellular carcinoma growth by inhibiting RAS/MEK/ERK axis via decreasing VEGFR2 expression[J]. Journal of Cellular and Molecular Medicine, 2021, 25(1): 549-560. DOI: 10.1111/jcmm.16108.
[8] ZHUANG H W, DAI X D, ZHANG X Y, et al. Sophoridine suppresses macrophage-mediated immunosuppression through TLR4/IRF3 pathway and subsequently upregulates CD8+ T cytotoxic function against gastric cancer[J]. Biomedicine & Pharmacotherapy, 2020, 121: 109636. DOI: 10.1016/j.biopha.2019.109636.
[9] WANG Q, LI Y, LI K W, et al. Sophoridine: a review of its pharmacology, pharmacokinetics and toxicity[J]. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology, 2022, 95: 153756. DOI: 10.1016/j.phymed.2021.153756.
[10] UR RASHID H, RASOOL S, ALI Y, et al. Anti-cancer potential of sophoridine and its derivatives: recent progress and future perspectives[J]. Bioorganic Chemistry, 2020, 99: 103863. DOI: 10.1016/j.bioorg.2020.103863.
[11] TIAN K P, WEI J R, WANG R, et al. Sophoridine derivative 6j inhibits liver cancer cell proliferation via ATF3 mediated ferroptosis[J]. Cell Death Discovery, 2023, 9(1): 296. DOI: 10.1038/s41420-023-01597-6.
[12] HOPKINS A L. Network pharmacology[J]. Nature Biotechnology, 2007, 25(10): 1110-1111. DOI: 10.1038/nbt1007-1110.
[13] 张代峰,胡晨骏,胡孔法.网络药理学在中药领域的应用和展望[J].医学信息学杂志,2024,45(6):30-36,56.DOI: 10.3969/j.issn.1673-6036.2024.06.006.
[14] 吴慧婕,黄晓梅,梁芬兰,等.黄杜鹃根化学成分及镇痛网络药理学研究[J].广西师范大学学报(自然科学版),2024,42(1):147-155.DOI: 10.16088/j.issn.1001-6600.2023062003.
[15] WANG X, SHEN Y H, WANG S W, et al. PharmMapper 2017 update: a web server for potential drug target identification with a comprehensive target pharmacophore database[J]. Nucleic Acids Research, 2017, 45(W1): W356-W360. DOI: 10.1093/nar/gkx374.
[16] GALLO K, GOEDE A, PREISSNER R, et al. SuperPred 3.0: drug classification and target prediction-a machine learning approach[J]. Nucleic Acids Research, 2022, 50(W1): W726-W731. DOI: 10.1093/nar/gkac297.
[17] DAINA A, MICHIELIN O, ZOETE V. SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules[J]. Nucleic Acids Research, 2019, 47(W1): W357-W364. DOI: 10.1093/nar/gkz382.
[18] YAO Z J, DONG J, CHE Y J, et al. TargetNet: a web service for predicting potential drug-target interaction profiling via multi-target SAR models[J]. Journal of Computer-aided Molecular Design, 2016, 30(5): 413-424. DOI: 10.1007/s10822-016-9915-2.
[19] CLOUGH E, BARRETT T. The gene expression omnibus database[J]. Methods in Molecular Biology, 2016, 1418: 93-110. DOI: 10.1007/978-1-4939-3578-9_5.
[20] DONCHEVA N T, MORRIS J H, GORODKIN J, et al. Cytoscape StringApp: network analysis and visualization of proteomics data[J]. Journal of Proteome Research, 2019, 18(2): 623-632. DOI: 10.1021/acs.jproteome.8b00702.
[21] SZKLARCZYK D, GABLE A L, LYON D, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets[J]. Nucleic Acids Research, 2019, 47(D1): D607-D613. DOI: 10.1093/nar/gky1131.
[22] SHERMAN B T, HAO M, QIU J, et al. David: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update)[J]. Nucleic Acids Research, 2022, 50(W1): W216-W221. DOI: 10.1093/nar/gkac194.
[23] BURLEY S K, BHIKADIYA C, BI C X, et al. RCSB protein data bank (RCSB.org): delivery of experimentally-determined PDB structures alongside one million computed structure models of proteins from artificial intelligence/machine learning[J]. Nucleic Acids Research, 2023, 51(D1): D488-D508. DOI: 10.1093/nar/gkac1077.
[24] 郑荣寿,张思维,孙可欣,等.2016年中国恶性肿瘤流行情况分析[J].中华肿瘤杂志,2023,45(3):212-220.DOI: 10.3760/cma.j.cn112152-20220922-00647.
[25] 宗静静,卿鑫,樊哲,等.原发性肝癌治疗进展[J].东南大学学报(医学版),2021,40(4):542-547.DOI: 10.3969/j.issn.1671-6264.2021.04.021.
[26] CHENG A L, KANG Y K, CHEN Z D, et al. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial[J]. The Lancet Oncology, 2009, 10(1): 25-34. DOI: 10.1016/S1470-2045(08)70285-7.
[27] LLOVET J M, RICCI S, MAZZAFERRO V, et al. Sorafenib in advanced hepatocellular carcinoma[J]. The New England Journal of Medicine, 2008, 359(4): 378-390. DOI: 10.1056/NEJMoa0708857.
[28] XU Y M, WU L C, RASHID H U, et al. Novel indolo-sophoridinic scaffold as Topo I inhibitors: design, synthesis and biological evaluation as anticancer agents[J]. European Journal of Medicinal Chemistry, 2018, 156: 479-492. DOI: 10.1016/j.ejmech.2018.07.028.
[29] 于春,高芬,郑兰兰,等.肝癌相关信号通路的中药调控研究进展[J].中国实验方剂学杂志,2024,30(15):232-243.DOI: 10.13422/j.cnki.syfjx.20240128.
[30] ZUO Q Z, HE J, ZHANG S, et al. PPARγ coactivator-1α suppresses metastasis of hepatocellular carcinoma by inhibiting warburg effect by PPARγ-dependent WNT/β-catenin/pyruvate dehydrogenase kinase isozyme 1 axis[J]. Hepatology, 2021, 73(2): 644-660. DOI: 10.1002/hep.31280.
[31] MOON H, RO S W. MAPK/ERK signaling pathway in hepatocellular carcinoma[J]. Cancers, 2021, 13(12): 3026. DOI: 10.3390/cancers13123026.
[32] GOEL S, BERGHOLZ J S, ZHAO J J. Targeting CDK4 and CDK6 in cancer[J]. Nature Reviews. Cancer, 2022, 22(6): 356-372. DOI: 10.1038/s41568-022-00456-3.
[33] ZHANG Z, LI J J, OU Y, et al. CDK4/6 inhibition blocks cancer metastasis through a USP51-ZEB1-dependent deubiquitination mechanism[J]. Signal Transduction and Targeted Therapy, 2020, 5(1): 25. DOI: 10.1038/s41392-020-0118-x.
[34] REVATHIDEVI S, MUNIRAJAN A K. Akt in cancer: mediator and more[J]. Seminars in Cancer Biology, 2019, 59: 80-91. DOI: 10.1016/j.semcancer.2019.06.002.
[35] GUO Y J, PAN W W, LIU S B, et al. ERK/MAPK signalling pathway and tumorigenesis[J]. Experimental and Therapeutic Medicine, 2020, 19(3): 1997-2007. DOI: 10.3892/etm.2020.8454.
[36] YAO C, KONG F Z, ZHANG S L, et al. Long non-coding RNA BANCR promotes proliferation and migration in oral squamous cell carcinoma via MAPK signaling pathway[J]. Journal of Oral Pathology & Medicine, 2021, 50(3): 308-315. DOI: 10.1111/jop.12968.
[37] BATOOL S, ASIM L, RAFFAQ QURESHI F, et al. Molecular targets of plant-based alkaloids and polyphenolics in liver and breast cancer: an insight into anticancer drug development[J]. Anti-cancer Agents in Medicinal Chemistry, 2025, 25(5): 295-312. DOI: 10.2174/01187152063022 16240628072554.
[38] NIU F L, YU Y, LI Z Z, et al. Arginase: an emerging and promising therapeutic target for cancer treatment[J]. Biomedicine & Pharmacotherapy, 2022, 149: 112840. DOI: 10.1016/j.biopha.2022.112840.
[39] KANG J Y, CHO H, GIL M, et al. The novel prognostic marker SPOCK2 regulates tumour progression in melanoma[J]. Experimental Dermatology, 2024, 33(6): e15092. DOI: 10.1111/exd.15092.
[40] 程婷婷,王成,潘效红.丝裂原蛋白活化激酶信号通路与癌症相关研究进展[J].滨州医学院学报,2021,44(4):302-305.DOI: 10.19739/j.cnki.issn1001-9510.2021.04.016.
[41] HOU C H, CHEN W L, LIN C Y. Targeting nerve growth factor-mediated osteosarcoma metastasis: mechanistic insights and therapeutic opportunities using larotrectinib[J]. Cell Death & Disease, 2024, 15(5): 381. DOI: 10.1038/s41419-024-06752-0.
[1] QIN Yehao, GUO Chenjing, WU Lichuan, WEI Pengcheng. Exploring the Anti-Liver Cancer Mechanism of Fufang Luxiancao Keli Based on UPLC-QTOF-MS, Network Pharmacology, and Experimental Validation [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(2): 221-237.
[2] ZHANG Bing, TANG Xin, CHEN Cong, NING Jiayi, ZHOU Yihuan, NIAN Siyun, YU Qiming, TAN Xiangduan. Analysis of Network Pharmacology of Qianggan Capsulein in Treating Nonalcoholic Fatty Liver Disease [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 206-218.
[3] WU Huijie, HUANG Xiaomei, LIANG Fenlan, HUANG Xin, LEI Mengying, ZHOU Yanlin, LIU Xuemei, WANG Gang. Identification of Chemical Consituents and Network Pharmacology Research of Rhododendron molle G. Don Root [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(1): 147-155.
[4] LIANG Linpan, LING Xue, FANG Jiao, SU Zhiheng, ZHENG Hua. Mechanism of Rubus suavissmus S. Lee in Intervention of Type 2 Diabetes Mellitus Based on Network Pharmacology and Molecular Docking Method [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(1): 143-154.
[5] JIANG Xianghui, TAN Rong, YANG Yongping, XIAO Qingzong. Analysis of Network Pharmacology and Confirmation of Mahonia fortunei (Lindl. ) Fedde and Glycyrrhiza uralensis Fisch Decoction for Hepatitis [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(5): 198-209.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!