Journal of Guangxi Normal University(Natural Science Edition) ›› 2024, Vol. 42 ›› Issue (6): 226-235.doi: 10.16088/j.issn.1001-6600.2023121001

Previous Articles     Next Articles

Comparative Study of Gastrointestinal Viruses in Three Rodent Species in the Northeast of China

WANG Shengze1,2, ZHANG Chengzhi1, XU Menghao1, WANG Yan1, WANG Yang1, LI Ting1, YUAN Baodong2*   

  1. 1. College of Life Sciences and Technology, Mudanjiang Normal University, Mudanjiang Heilongjiang 157011, China;
    2. College of Life Sciences, Liaocheng University, Liaocheng Shandong 252000, China
  • Received:2023-12-10 Revised:2024-01-12 Online:2024-12-30 Published:2024-12-30

Abstract: Myodes rufocanus, Apodemus peninsulae and Apodemus agrarius are the three main rodent pests in the Northeast region of China. The gut microbiota of animals, along with their gastrointestinal tract, form a complex microbial ecosystem and play an important role in the host’s intestine. To investigate the composition and phylogenetic relationships of gut viruses in these three rodent species and the impact of their habitats, this study conducted metagenomic sequencing on 17 samples of Korean field mice, 17 samples of brown-backed voles from the same habitat, and 9 samples of striped field mice from a different habitat. After screening for viral information, the gut viral composition and differences among the three rodent species were compared and analyzed. The results showed that Artverviricota and Uroviricota were dominant viral phyla shared by the three rodent species, while Betaretrovirus and Gammaretrovirus were dominant viral genera shared by the three rodent species. Furthermore, significant differences were observed among the gut viral communities of the three rodent species, with nine phyla and 18 genera of viruses enriched in different samples. Among the top ten viruses in terms of relative abundance in the gut, Korean field mice and striped field mice exhibited significant differences in five phyla and five genera, while brown-backed voles and Korean field mice exhibited significant differences in three phylum and six genera. At the phylum level, the gut viral composition of brown-backed voles was more similar to that of Korean field mice, whereas at the genus level, the gut viral composition of striped field mice was more similar to that of Korean field mice. Based on these findings, it can be inferred that habitat had a greater influence on gut viral composition at the phylum level, while factors such as diet, phylogenetic relationship had a greater impact.

Key words: rodent, enterovirus, metagenome, northeast of China

CLC Number:  Q939.4
[1] PHILLIPS C D, PHELAN G, DOWD S E, et al. Microbiome analysis among bats describes influences of host phylogeny, life historyphysiology and geography[J]. Molecular Ecology, 2012, 21(11): 2617-2627. DOI: 10.1111/j.1365-294X.2012.05568.x.
[2] YOO J Y, GROER M, DUTRA S V O, et al. Gut microbiota and immune system interactions[J]. Microorganisms, 2020, 8(10):1587. DOI: 10.3390/microorganisms8101587.
[3] SPOR A KOREN O, LEY R. Unravelling the effects of the environment and host genotype on the gut microbiome[J]. Nature Reviews Microbiology, 2011, 9(4): 279-290. DOI: 10.1038/nrmicro2540.
[4] 孙悦, 戴求仲, 蒋桂韬, 等. 饲粮支链氨基酸比例对28~63日龄攸县麻鸭肠道菌群的影响[J]. 广西师范大学学报(自然科学版), 2022, 40(2): 242-250. DOI: 10.16088/j.issn.1001-6600.2020110901.
[5] GROUSSIN M, MAZEL F, SANDERS J G, et al. Unraveling the processes shaping mammalian gut microbiomes over evolutionary time[J]. Nature Communications, 2017, 8: 14319. DOI: 10.1038/ ncomms14319.
[6] YOUNGBLUT N D, REISCHER G H, WALTERS W, et al. Host diet and evolutionary history explain different aspects of gut microbiome diversity among vertebrate clades[J]. Nature Communications, 2019, 10(1): 2200. DOI: 10.1038/s41467-019-10191-3.
[7] 陶万银, 朱书. 肠道病毒组与人体健康研究进展[J]. 生物学杂志, 2019, 36(6): 1-5. DOI: 10.3969/j.issn.2095-1736.2019.06.001.
[8] YATSUNENKO T, REY F E, MANARY M J, et al. Human gut microbiome viewed across age and geography[J]. Nature, 2012, 486(7402): 222-227. DOI: 10.1038/nature11053.
[9] 马逸清. 黑龙江省兽类志[M]. 哈尔滨:黑龙江科学技术出版社, 1986.
[10] 四川资源动物志编辑委员会. 四川资源动物志:第2卷 兽类[M]. 成都: 四川科学技术出版社, 1984.
[11] 韩崇选, 李金钢, 杨学军, 等. 中国农林啮齿动物与科学管理[M]. 杨凌: 西北农林科技大学出版社, 2005.
[12] 杨春文. 东北主要林区森林五种啮齿动物共存机制研究[D]. 哈尔滨: 东北林业大学, 2007.
[13] 金志民. 黑龙江省张广才岭林区啮齿动物群落格局动态研究[D]. 哈尔滨: 东北林业大学, 2018.
[14] 王丛民, 朴忠万, 刘文洋, 等. 大林姬鼠与黑线姬鼠消化系统的比较研究[J]. 教育教学坛, 2013(42): 163-164. DOI: 10.3969/j.issn.1674-9324.2013.42.126.
[15] 贾修歧, 杨新宇, 王喜伟, 等. 黑线姬鼠和大林姬鼠消化系统中过氧化物酶的比较分析[J]. 湖北农业科学, 2019, 58(23): 148-150. DOI: 10.14088/j.cnki.issn0439-8114.2019.23.036.
[16] 金志民, 杨常玉, 张震宇, 等. 黑线姬鼠与大林姬鼠的血糖值比较研究[J]. 黑龙江畜牧兽医, 2016(4): 183-184. DOI: 10.1388/j.cnki.hljxmsy.2016.0710.
[17] 徐春雨, 王述艳, 于成文, 等. 大林姬鼠与黑线姬鼠生物学指标对比分析[J]. 湖北农业科学, 2021, 60(2): 123-125.
[18] 张春凤, 苏航, 周思宇, 等. 大林姬鼠和黑线姬鼠肠道菌群的比较与分析[J]. 天津农业科学, 2022, 28(3): 14-18.
[19] 苏航, 周思宇, 杨文建, 等. 大林姬鼠和棕背?生物学指标对比分析[J]. 湖北农业科学, 2022, 61(4): 133-135.
[20] MAURA D, GALTIER M, LE BOUGUÉNEC C, et al.Virulent bacteriophages can target O104:H4 enteroaggregative Escherichia coli in the mouse intestine[J]. Antimicrobial Agents and Chemotherapy, 2012, 56(12): 6235-6242. DOI: 10.1128/AAC.00602-12.
[21] GALTIER M, DE SORDI L, SIVIGNON A, et al. Bacteriophages targeting adherent invasive Escherichia coli strains as a promising new treatment for crohn’s disease[J]. Journal of Crohn’s and Colitis, 2017, 11(7): 840-847. DOI: 10.1093/ecco-jcc/jjw224.
[22] LI H, DURBIN R. Fast and accurate short read alignment with Burrows-wheeler transform[J]. Bioinformatics, 2009, 25(14): 1754-1760. DOI: 10.1093/bioinformatics/btp324.
[23] CHEN S F, ZHOU Y Q, CHEN Y R, et al. Fastp: an Ultra-fast all-in-one FASTQ preprocessor[J]. Bioinformatics, 2018, 34(17): i884-i890. DOI: 10.1093/bioinformatics/bty560.
[24] LI D H, LIU C M, LUO R B, et al. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph[J]. Bioinformatics, 2015, 31(10): 1674-1676. DOI: 10.1093/bioinformatics/btv033.
[25] HYATT D, CHEN G L, LOCASCIO P F, et al. Prodigal: prokaryotic gene recognition and translation initiation site identification[J]. BMC Bioinformatics, 2010, 11: 119. DOI: 10.1186/1471-2105-11-119.
[26] FU L M, NIU B F, ZHU Z W, et al. CD-HIT: accelerated for clustering the next-generation sequencing data[J]. Bioinformatics, 2012, 28(23): 3150-3152. DOI: 10.1093/bioinformatics/bts565.
[27] LANGMEAD B, SALZBERG S L. Fast gapped-read alignment with Bowtie 2[J]. Nature Methods, 2012, 9(4): 357-359. DOI: 10.1038/nmeth.1923.
[28] QIN J J, LI R Q, RAES J, et al. A human gut microbial gene catalogue established by metagenomic sequencing[J]. Nature, 2010, 464(7285): 59-65. DOI: 10.1038/nature08821.
[29] 孙涛, 梁丽芬, 许艺兰, 等. 发酵罗汉果渣对黄羽肉鸡肠道形态和菌群的影响[J]. 广西师范大学学报(自然科学版), 2024, 42(1): 191-199. DOI: 10.16088/j.issn.1001-6600.2022121501.
[30] SHALON D, CULVER R N, GREMBI J A, et al. Profiling the human intestinal environment under physiological conditions[J]. Nature, 2023, 617(7961): 581-591. DOI:10.1038/s41586-023-05989-7.
[31] 张学英, KHAKISAHNEH S, 王德华. 啮齿动物的代谢和肠道菌群特征与其系统发育的关系[C] // 第十六届全国野生动物生态与资源保护学术研讨会论文摘要集. 北京:中国动物学会兽类分会, 2023: 178. DOI: 10.26914/c.cnkihy.2023.053077.
[32] DEBARBIEUX L, FISCHER M, QUAX T E F. Viruses of microbes[J]. Viruses, 2017, 9(9): 263. DOI: 10.3390/v9090263.
[33] XU H M, XU W M, ZHANG L. Current status of phage therapy against infectious diseases and potential application beyond infectious diseases[J]. International Journal of Chinica Practice, 2022, 2022: 4913146. DOI: 10.1155/2022/4913146.
[34] 李殿伟, 常诗麒, 张承志, 等. 张广才岭啮齿动物分散储食选择3种林木种子特征研究[J]. 牡丹江师范学院学报(自然科学版), 2023(2): 31-36, 43. DOI: 10.3969/j.issn.1003-6180.2023.02.008.
[35] 张春美, 郝忍, 杨春文, 等. 棕背?的食性和种群年龄组成研究初报[J]. 森林病虫通讯, 1995,14(1): 19-20.
[36] STANISLAWSKI M A, DABELEA D, LANGE L A, et al. Gut microbiota phenotypes of obesity[J]. NPJ Biofilms and Microbiomes, 2019, 5(1): 18. DOI: 10.1038/s41522-019-0091-8.
[37] SUN Y F, HAO Y T, ZHANG Q, et al. Coping with extremes: Alternations in diet, gut microbiota, and hepatic metabolic functions in a highland passerine[J]. Science of the Total Enviornment, 2023, 905: 167079. DOI: 10.1016/j.scitotenv.2023.167079.
[1] TANG Chuangbin, DONG Peipei, HUANG Qiuchan, TAN Weining, ZHOU Qihai, WANG Guohai. Comparison of Seed Removal Behavior of Rodents to Kmeria septentrionalis and Cyclobalanopsis glauca in the Karst Habitat [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 199-204.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHU Gege, HUANG Anshu, QIN Yingying. Analysis of Development Trend of International Mangrove Research Based on Web of Science[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 1 -12 .
[2] HE Jing, FENG Yuanliu, SHAO Jingwen. Research Progress on Multi-source Data Fusion Based on CiteSpace[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 13 -27 .
[3] WANG Shuying, LU Yuxiang, DONG Shutong, CHEN Mo, KANG Bingya, JIANG Zhanglan, SU Chengyuan. Research Progress on the Propagation Process and Control Technology of ARGs in Wastewater[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 1 -15 .
[4] ZHONG Qiao, CHEN Shenglong, TANG Congcong. Hydrogel Technology for Microalgae Collection: Status Overview, Challenges and Development Analysis[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 16 -29 .
[5] ZHAI Siqi, CAI Wenjun, ZHU Su, LI Hanlong, SONG Hailiang, YANG Xiaoli, YANG Yuli. Dynamic Relationship Between Reverse Solute Flux and Membrane Fouling in Forward Osmosis[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 30 -39 .
[6] ZHENG Guoquan, QIN Yongli, WANG Chenxiang, GE Shijia, WEN Qianmin, JIANG Yongrong. Stepwise Precipitation of Heavy Metals from Acid Mine Drainage and Mineral Formation in Sulfate-Reducing Anaerobic Baffled Reactor System[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 40 -52 .
[7] LIU Yang, ZHANG Yijie, ZHANG Yan, LI Ling, KONG Xiangming, LI Hong. Current Status and Trends of Algal Coagulation Elimination Technology in Drinking Water Treatment: a Visual Analysis Based on CiteSpace[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 53 -66 .
[8] TIAN Sheng, CHEN Dong. A Joint Eco-driving Optimization Research for Connected Fuel Cell Hybrid Vehicle via Deep Reinforcement Learning[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 67 -80 .
[9] CHEN Xiufeng, WANG Chengxin, ZHAO Fengyang, YANG Kai, GU Kexin. A Single Intersection Signal Control Method Based on Improved DQN Algorithm[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 81 -88 .
[10] LI Xin, NING Jing. Online Assessment of Transient Stability in Power Systems Based on Spatiotemporal Feature Fusion[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 89 -100 .