Journal of Guangxi Normal University(Natural Science Edition) ›› 2024, Vol. 42 ›› Issue (4): 32-40.doi: 10.16088/j.issn.1001-6600.2023092201

Previous Articles     Next Articles

Progress of Microbial Fermentation for Tetramethylpyrazine Production

LI Yujia1, LUO Lirong1, SHANG Changhua1,2*   

  1. 1. Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin Guangxi 541006, China;
    2. Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin (Guangxi Normal University), Guilin Guangxi 541006, China
  • Received:2023-09-22 Revised:2023-12-14 Online:2024-07-25 Published:2024-09-05

Abstract: Tetramethylpyrazine (C8H12N2), a natural compound, was firstly extracted from Ligusticum chuanxiong Hort., a plant of Umbelliferae family. It has the effects of dilating blood vessels, activating blood circulation and improving microcirculation. The research of tetramethylpyrazine has been a hot spot in physiology and clinical medicine. Tetramethylpyrazine has a special flavour, which can improve bitterness, acidity, and provide aroma to the baked foods and fermented foods. Tetramethylpyrazine can also be used as a food flavour enhancer in food production industry. This paper discussed the metabolic pathways, through which sugars were metabolized to produce tetramethylpyrazine in microorganisms. The common methods used to increase the yield of tetramethylpyrazine from microorganisms were summarized. The advantages and disadvantages of microbial fermentation to produce tetramethylpyrazine were discussed.

Key words: tetramethylpyrazine, microbial fermentation, Bacillus

CLC Number:  TQ929;TS264.3
[1] 杨楚耀, 陈光润, 徐光漪. 四甲基吡嗪二溴产物结构的确定[J]. 化学学报, 1986, 44(3): 299-301.
[2] 张晓娟, 张燕丽, 左冬冬. 川芎的化学成分和药理作用研究进展[J]. 中医药信息, 2020, 37(6): 128-133. DOI: 10.19656/j.cnki.1002-2406.200177.
[3] 张露苗, 马平凡. 川芎在心血管疾病中的药理及临床应用探究[J]. 中医临床研究, 2021, 13(1): 18-20. DOI: 10.3969/j.issn.1674-7860.2021.01.006.
[4] 崔菊玲. 川芎在心血管疾病中的药理及临床应用[J]. 河南医学研究, 2021, 30(26): 4992-4994.
[5] 董小莉, 马立宁, 王苗. 川芎嗪对冠心病大鼠的血管保护作用研究[J]. 中国医药, 2021, 16(3): 340-344. DOI: 10.3760/j.issn.1673-4777.2021.03.005.
[6] 蒋昇源, 邓博文, 徐林, 等. 川芎嗪修复脊髓损伤的作用及机制[J]. 中国组织工程研究, 2022, 26(11): 1799-1804.
[7] 吴建峰. 中国白酒中健康功能性成分四甲基吡嗪的研究[J]. 酿酒科技, 2007(1): 117-120. DOI: 10.3969/j.issn.1001-9286.2007.01.034.
[8] 林卓辉. 阿魏酸四甲基吡嗪药动学研究及其片剂的制备[D]. 广州: 广东药学院, 2011.
[9] 解霞, 郝立宏, 高清波, 等. 川芎嗪逆转肿瘤多药耐药性及其机制的研究[J]. 中华肿瘤防治杂志, 2006, 13(18): 1368-1370.
[10] 金玉青, 洪远林, 李建蕊, 等. 川芎的化学成分及药理作用研究进展[J]. 中药与临床, 2013, 4(3): 44-48.
[11] 蒲忠慧, 代敏, 彭成, 等. 川芎生物碱的物质基础及药理作用研究进展[J]. 中国药房, 2020, 31(8): 1020-1024.
[12] ZHANG W Q, SI G R, RAO Z M, et al. Hepatoprotective ability of tetramethylpyrazine produced by Bacillus amyloliquefaciens[J]. Systems Microbiology and Biomanufacturing, 2021, 1(2): 223-233. DOI: 10.1007/s43393-020-00018-4.
[13] 陈汉平. 得自佛肚树茎中的抗菌物质: 四甲基吡嗪[J]. 国外药学(植物药分册), 1981(5): 23.
[14] 唐贤华, 杨官荣, 黄志瑜, 等. 中国白酒与人体健康关系研究综述[J]. 酿酒, 2014, 41(5): 10-13.
[15] 林山, 曾义勇, 陈洪. 2,3,5,6-四甲基吡嗪发酵法制备及天然度[C] //第七届中国香料香精学术研讨会. 北京:中国香料香精化妆品工业协会, 2008: 49-52.
[16] 马双成, 邓少伟. 川芎提取、纯化工艺条件的实验研究[J]. 中国中药杂志, 1999, 24(4): 215-217.
[17] 叶璟. 川芎有效成分的提取技术[J]. 中国高新技术企业, 2009(15): 55-56.
[18] 王芳, 朱克, 尤卫民. 川芎中川芎嗪超临界CO2萃取法提取工艺研究[J]. 中国药业, 2008, 17(24): 42-43.
[19] 曹阳, 王铁杰, 王玉, 等. HPLC法测定不同产地川芎中川芎嗪的含量[J]. 药物分析杂志, 2005, 25(3): 278-280.
[20] 杜宇, 周敏, 刘恭欣. 3-羟基-2-丁酮合成2,3,5,6-四甲基吡嗪的研究[J]. 河南化工, 2011, 28(3): 35-38.
[21] 吴建峰, 徐岩. 白酒酒曲中高产四甲基吡嗪菌株的筛选和鉴定[J]. 工业微生物, 2013, 43(6): 7-13. DOI: 10.3969/j.issn.1001-6678.2013.002.
[22] 侯孝元, 顾如林, 梁文龙, 等. 利用发酵法生产四甲基吡嗪研究进展[J]. 生物技术通报, 2016, 32(1): 58-64. DOI: 10.13560/j.cnki.biotech.bull.1985.2016.01.010.
[23] KOSUGE T, KAMIYA H. Discovery of a pyrazine in a natural product: tetramethylpyrazine from cultures of a strain of Bacillus subtilis[J]. Nature, 1962, 193(4817): 776.
[24] ADACHI T, KAMIYA H, KOSUGE T. Studies on the metabolic products of Bacillus subtilis. II. The production of tetramethylpyrazine by natto[J]. Journal of the Pharmaceutical Society of Japan, 1964, 84: 451-452.
[25] RIZZI G P. Formation of pyrazines from acyloin precursors under mild conditions[J]. Journal of Agricultural and Food Chemistry, 1988, 36(2): 349-352. DOI: 10.1021/jf00080a026.
[26] 吴建峰. 白酒中四甲基吡嗪全程代谢机理研究[D]. 无锡: 江南大学, 2013.
[27] ZHAO X X, LIU Y H, SHU L, et al. Study on metabolites of Bacillus producing soy sauce-like aroma in Jiang-flavor Chinese spirits[J]. Food Science & Nutrition, 2019, 8(1): 97-103. DOI: 10.1002/fsn3.1266.
[28] 曹逑舜, 王民俊. 吡嗪化合物与加热香气[J]. 酿酒科技, 1981(2): 21-25. DOI: 10.13746/j.njkj.1981.02.009.
[29] 李豆南,黄魏,王晓丹,等.酱香型大曲中高温放线菌的筛选及风味成分分析[J]. 食品科学,2018, 39(6): 171-176.
[30] BESSON I, CREULY C, GROS J B, et al. Pyrazine production by Bacillus subtilis in solid-state fermentation on soybeans[J]. Applied Microbiology and Biotechnology, 1997, 47(5): 489-495.
[31] CUI D Y, WEI Y N, LIN L C, et al. Increasing yield of 2,3,5,6-tetramethylpyrazine in Baijiu through Saccharomyces cerevisiae metabolic engineering[J]. Frontiers in Microbiology, 2020, 11: 596306.
[32] DEMAIN A L, JACKSON M, TRENNER N R. Thiamine-dependent accumulation of tetramethylpyrazine accompanying a mutation in the isoleucine-valine pathway[J]. Journal of Bacteriology, 1967, 94(2): 323-326.
[33] KIM K S, LEE H J, SHON D H, et al. Optimum conditions for the production of tetramethylpyrazine flavor compound by aerobic fedbatch culture of Lactococcus lactis subsp. lactis biovar. diacetilactis FC1[J]. Journal of Microbiology and Biotechnology, 1994, 4(4): 327-332.
[34] XIAO Z J, XIE N Z, LIU P H, et al. Tetramethylpyrazine production from glucose by a newly isolated Bacillus mutant[J]. Applied Microbiology and Biotechnology, 2006, 73(3): 512-518.
[35] ZHU B F, XU Y. A feeding strategy for tetramethylpyrazine production by Bacillus subtilis based on the stimulating effect of ammonium phosphate[J]. Bioprocess and Biosystems Engineering, 2010, 33(8): 953-959.
[36] ZHANG W Q, SI G R, RAO Z M, et al. High yield of tetramethylpyrazine in functional Fuqu using Bacillus amyloliquefaciens[J]. Food Bioscience, 2019, 31: 100435.
[37] ZHONG H X, SHEN J, MENG Z, et al. Tetramethylpyrazine production from edible materials by the probiotic Bacillus coagulans[J]. Preparative Biochemistry & Biotechnology, 2020, 50(9): 935-942.
[38] ZHU B F, XU Y, FAN W L. High-yield fermentative preparation of tetramethylpyrazine by Bacillus sp. using an endogenous precursor approach[J]. Journal of Industrial Microbiology and Biotechnology, 2010, 37(2): 179-186. DOI: 10.1007/s10295-009-0661-5.
[39] 张颖, 李霄霄, 李景辉, 等. 高产四甲基吡嗪芽孢杆菌的筛选及其对酱香型白酒堆积过程的影响[J]. 食品工业科技, 2022, 43(2):142-149. DOI: 10.13386/j.issn1002-0306.2021050066.
[40] 王西, 沈毅, 张亚东, 等. 产香枯草芽孢杆菌在酱香型白酒生产中的应用[J]. 酿酒科技, 2018(7): 70-75. DOI: 10.13746/j.njkj.2018161.
[41] 丁雪梅. 酒曲中高产四甲基吡嗪菌株的选育及发酵优化[D]. 天津: 天津科技大学, 2015.
[42] XIAO Z J, LU J R. Strategies for enhancing fermentative production of acetoin: a review[J]. Biotechnology Advances, 2014, 32(2): 492-503.
[43] MENG W, DING F, WANG R M, et al. Enhanced production of tetramethylpyrazine in Bacillus licheniformis BL1 through aldC over-expression and acetaldehyde supplementation[J]. Scientific Reports, 2020, 10(1): 3544.
[44] ALI N O, BIGNON J, RAPOPORT G, et al. Regulation of the acetoin catabolic pathway is controlled by sigma L in Bacillus subtilis[J]. Journal of Bacteriology, 2001, 183(8): 2497-2504.
[45] XIAO Z J, HOU X Y, LYU X, et al. Accelerated green process of tetramethylpyrazine production from glucose and diammonium phosphate[J]. Biotechnology for Biofuels, 2014, 7(1): 106. DOI: 10.1186/1754-6834-7-106.
[46] XIAO Z J, LIU P H, QIN J Y, et al. Statistical optimization of medium components for enhanced acetoin production from molasses and soybean meal hydrolysate[J]. Applied Microbiology and Biotechnology, 2007, 74(1): 61-68. DOI: 10.1007/s00253-006-0646-5.
[47] LI Y J, GAN S L, LUO L R, et al. Optimization of molasses and soybean meal content to enhance tetramethylpyrazine yield by Bacillus sp. TTMP20[J]. Molecules, 2023, 28(18): 6515. DOI: 10.3390/molecules28186515.
[48] ADACHI T, KAMIYA H, KOSUGE T. Studies on the metabolic prod-ucts of Bacillus subtilis. IV. Determination and mechanism of formation of tetramethylpyrazine[J]. Journal of Pharmaceuitical Society of Japan, 1964, 84: 545-548.
[49] 朱兵峰, 徐岩. 一种用于枯草杆菌发酵生产四甲基吡嗪的补料策略[J]. 酿酒科技, 2011(2): 17-22. DOI: 10.13746/j.njkj.2011.02.002.
[50] HÄßLER T, SCHIEDER D, PFALLER R, et al. Enhanced fed-batch fermentation of 2,3-butanediol by Paenibacillus polymyxa DSM 365[J]. Bioresource Technology, 2012, 124: 237-244.
[51] 赵洪源, 贠建民, 邵晓庆, 等. 凉州熏醋酿造中高产乙偶姻醋酸菌菌株筛选及其发酵条件优化[J]. 食品科学, 2015, 36(15): 98-104.
[52] 祝赛峰, 吴建峰, 赵希荣. 响应面法优化枯草芽孢杆菌S0507产四甲基吡嗪的培养条件[J]. 食品科学, 2014, 35(9): 218-223.
[53] 郭春生, 杨舟, 乔月梅, 等. 高产四甲基吡嗪微生物的筛选、鉴定及发酵条件优化[J]. 中国酿造, 2022, 41(9): 80-85.
[54] HAO F, WU Q, XU Y. Precursor supply strategy for tetramethylpyrazine production by Bacillus subtilis on solid-state fermentation of wheat bran[J]. Applied Biochemistry and Biotechnology, 2013, 169(4): 1346-1352.
[55] ZHU B F, XU Y. Production of tetramethylpyrazine by batch culture of Bacillus subtilis with optimal pH control strategy[J]. Journal of Industrial Microbiology & Biotechnology, 2010, 37(8): 815-821.
[1] XU Xiangwei, ZHANG Jifu, ZHANG Yun, HU Yunfeng. Adsorption of Crystalline Violet by Bacillus sp. LM-24 in Deep Sea [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(3): 221-231.
[2] LI Qicong, JIN Qiuzhu, LUO Haiyu, YAN Zhenling, DENG Yecheng, DENG Zhiyong. Research Progress of Biocontrol Microorganisms of Citrus Canker [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 388-397.
[3] WANG Pei, CAO Jian-hua, SONG De-gui, GU Lan-tao, DONG Yan-ling. Screening and Identification of a Strain of Hydantoinase-producing Microorganism [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(1): 119-124.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHAO Jie, SONG Shuang, WU Bin. Overview of Image USM Sharpening Forensics and Anti-forensics Techniques[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 1 -16 .
[2] AI Congcong, GONG Guoli, JIAO Xiaoyu, TIAN Lu, GAI Zhongchao, GOU Jingxuan, LI Hui. Komagataella phaffii Serves as a Model Organism for Emerging Basic Research[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 17 -26 .
[3] ZHAI Yanhao, WANG Yanwu, LI Qiang, LI Jingkun. Progress of Dissolved Organic Matter in Inland Water by Three-Dimensional Fluorescence Spectroscopy Based on CiteSpace[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 34 -46 .
[4] CHEN Li, TANG Mingzhu, GUO Shenghui. Cyber-Physical Systems State Estimation and Actuator Attack Reconstruction of Intelligent Vehicles[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 59 -69 .
[5] LI Chengqian, SHI Chen, DENG Minyi. Study for the Electrocardiographic Signal of Brugada Syndrome Patients Using Cellular Automaton[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 86 -98 .
[6] LÜ Hui, LÜ Weifeng. Fundus Hemorrhagic Spot Detection Algorithm Based on Improved YOLOv5[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 99 -107 .
[7] YI Jianbing, PENG Xin, CAO Feng, LI Jun, XIE Weijia. Research on Point Cloud Registration Algorithm Based on Multi-scale Feature Fusion[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 108 -120 .
[8] LI Li, LI Haoze, LI Tao. Multi-primary-node Byzantine Fault-Tolerant Consensus Mechanism Based on Raft[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 121 -130 .
[9] ZHAO Xiaomei, DING Yong, WANG Haitao. Maximum Likelihood DOA Estimation Based on Improved Monarch Butterfly Algorithm[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 131 -140 .
[10] ZHU Yan, CAI Jing, LONG Fang. Statistical Analysis of Partially Step Stress Accelerated Life Tests for Compound Rayleigh Distribution Competing Failure Model Under Progressive Type-Ι Hybrid Censoring[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 159 -169 .