Journal of Guangxi Normal University(Natural Science Edition) ›› 2024, Vol. 42 ›› Issue (2): 183-191.doi: 10.16088/j.issn.1001-6600.2023031501

Previous Articles     Next Articles

Medaka gsdf Regulates Differential Expression of Igf2bp2/Igf2bp3-m6A Reader in Male and Female Germ Cells

WANG Guangxing, GUO Zhenhua, YANG Jihui, LI Yayuan, LI Xinwen, GUAN Guijun*   

  1. College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
  • Received:2023-03-15 Revised:2023-05-15 Published:2024-04-22

Abstract: Knockout of gonadal soma-derived factor (gsdf), led to the abnormal proliferation of germ cells and sexual reversal of XY males to females. Differences in transcriptome data of wild-type XY testis, XX ovary, and gsdf-deficient XY giant testis or XY giant ovary showed that the expression level of igf2bp2 (insulin-like growth factor 2 mRNA binding protein 2) was significantly higher in wild-type XY sperms than that in wild-type XX ovary and gsdf-deficient XY sperms and XY ovary, and confirmed by RT-qPCR, suggesting that igf2bp2 expression may be regulated by gsdf signal. The molecular structure of vertebrate igf2bp2 was highly homology evolutionary conserved. RT-qPCR showed that igf2bp2 mRNA was highly expressed in early embryogenesis, especially in the stage of gastrulation. The expression of igf2bp2 was in early embryogenesis and predominant testis in adulthood, suggesting that igf2bp2 may play an important role in early embryonic development, sex differentiation and spermatogenesis. Immunofluorescence assay revealed that the signal of positive reaction of anti-Igf2bp2 antibody in wild-type XY testis was stronger than that of XX ovary, gsdf-deficient XY testis or XY ovary. The presence or absence of gsdf signaling was positively correlated with igf2bp2 expression during gonadal developmental differentiation in medaka, thus may potentially promote igf2bp2 expression, which was opposite to the inhibition of igf2bp3 expression. gsdf-regulatory role of igf2bp2/igf2bp3 expression during medaka spermatogenesis may be a conserved molecular mechanism in vertebrate gonadal differentiation and spermatogenesis.

Key words: medaka, germ cell, sexual differentiation, modulating control, transforming growth factor-β

CLC Number:  S917.4
[1] DAVID C J, MASSAGUÉ J. Contextual determinants of TGFβ action in development, immunity and cancer[J]. Nature Reviews Molecular Cell Biology, 2018, 19(7): 419-435.DOI: 10.1038/s41580-018-0007-0.
[2] DERYNCK R, BUDI E H. Specificity, versatility, and control of TGF-β family signaling[J]. Science Signaling, 2019, 12(570): eaav5183.DOI: 10.1126/scisignal.aav5183.
[3] MORIKAWA M, DERYNCK R, MIYAZONO K. TGF-β and the TGF-β family: context-dependent roles in cell and tissue physiology[J].Cold Spring Harbor Perspectives in Biology, 2016, 8(5): a021873. DOI: 10.1101/cshperspect.a021873.
[4] KANEKO H, IJIRI S, KOBAYASHI T, et al. Gonadal soma-derived factor (gsdf), a TGF-beta superfamily gene, induces testis differentiation in the teleost fish Oreochromis niloticus[J]. Molecular and Cellular Endocrinology, 2015, 415: 87-99.DOI: 10.1016/j.mce.2015.08.008.
[5] 亢逸, 关桂君, 洪云汉. 用模式生物青鳉概观硬骨鱼性别决定及性分化研究进展[J]. 遗传, 2017, 39(6): 441-454. DOI: 10.16288/j.yczz.17-140.
[6] ZHANG X, GUAN G J, LI M Y, et al. Autosomal gsdf acts as a male sex initiator in the fish medaka[J]. Scientific Reports, 2016, 6: 19738. DOI: 10.1038/srep19738.
[7] 郭海燕, 李茜, 关桂君. 青鳉gsdf下游因子zc4h2在脑-性腺中的表达分析[J]. 基因组学与应用生物学, 2022, 41(4): 720-730.DOI:10.13417/j.gab.041.000720.
[8] 李雅园, 王光幸, 李新闻,等. 青鳉nup58的表达及其在性别分化中的潜在作用[J]. 广西师范大学学报(自然科学版), 2024, 42(1): 190-201.DOI:10.16088/j.issn.1001-6600.2023012701.
[9] NISHIMURA T, TANAKA M. Gonadal development in fish[J]. Sexual Development, 2014, 8(5): 252-261.DOI: 10.1159/000364924.
[10] WU X W, ZHANG Y Q, XU S M, et al. Loss of Gsdf leads to a dysregulation of Igf2bp3-mediated oocyte development in medaka[J]. General and Comparative Endocrinology, 2019, 277: 122-129.DOI: 10.1016/j.ygcen.2019.04.001.
[11] DAI N. The diverse functions of IMP2/IGF2BP2 in metabolism[J]. Trends in Endocrinology and Metabolism, 2020, 31(9): 670-679.DOI: 10.1016/j.tem.2020.05.007.
[12] KORN S M, ULSHÖEFER C J, SCHNEIDER T, et al. Structures and target RNA preferences of the RNA-binding protein family of IGF2BPs: an overview[J]. Structure, 2021, 29(8): 787-803. DOI: 10.1016/j.str.2021.05.001.
[13] YISRAELI J K. VICKZ proteins: a multi-talented family of regulatory RNA-binding proteins[J]. Biology of the Cell, 2005, 97(1): 87-96.DOI: 10.1042/BC20040151.
[14] LI M Y, RONG X Z, LU L, et al. IGF-2 mRNA binding protein 2 regulates primordial germ cell development in zebrafish[J]. General and Comparative Endocrinology, 2021, 313: 113875.DOI: 10.1016/j.ygcen.2021.113875.
[15] GALLARDO T D, JOHN G B, SHIRLEY L, et al. Genomewide discovery and classification of candidate ovarian fertility genes in the mouse[J]. Genetics, 2007, 177(1): 179-194.DOI: 10.1534/genetics.107.074823.
[16] LI X, LI X W, LI W H, et al. Sex-specific meiosis responses to Gsdf in medaka (Oryzias latipes)[J]. The FEBS Journal, 2023, 290(10): 2760-2779. DOI: 10.1111/febs.16701.
[17] BAI G, ZHAI X X, LIU L L, et al. The molecular characteristics in different procedures of spermatogenesis[J]. Gene, 2022, 826: 146405.DOI: 10.1016/j.gene.2022.146405.
[18] TANG C, XIE Y M, YU T, et al. m6A-dependent biogenesis of circular RNAs in male germ cells[J]. Cell Research, 2020, 30(3): 211-228.DOI: 10.1038/s41422-020-0279-8.
[19] HAMMER N A, HANSEN T V O, BYSKOV A G, et al. Expression of IGF-II mRNA-binding proteins (IMPs) in gonads and testicular cancer[J]. Reproduction, 2005, 130(2): 203-212. DOI: 10.1530/rep.1.00664.
[20] 郭韶珂,裴杰,王兴东,等.m6A修饰及其生殖调控功能研究进展[J].中国畜牧杂志,2022,58(1):21-27.DOI:10.19556/j.0258-7033.20210106-05.
[21] TANG C, KLUKOVICH R, PENG H Y, et al. ALKBH5-dependent m6A demethylation controls splicing and stability of long 3′-UTR mRNAs in male germ cells[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(2): E325-E333.DOI: 10.1073/pnas.1717794115.
[22] ZHANG X T, CHANG Y Y, ZHAI W Y, et al. A potential role for the Gsdf-eEF1α complex in inhibiting germ cell proliferation: a protein-interaction analysis in medaka (Oryzias latipes) from a proteomics perspective[J]. Molecular & Cellular Proteomics, 2021, 20: 100023.DOI: 10.1074/mcp.RA120.002306.
[23] LIU H B, MUHAMMAD T, GUO Y S, et al. RNA-binding protein IGF2BP2/IMP2 is a critical maternal activator in early zygotic genome activation[J]. Advanced Science, 2019, 6(15): 1900295.DOI: 10.1002/advs.201900295.
[24] DeCHIARA T M, ROBERTSON E J, EFSTRATIADIS A. Parental imprinting of the mouse insulin-like growth factor II gene[J]. Cell, 1991, 64(4): 849-859.DOI: 10.1016/0092-8674(91)90513-x.
[25] WOODS K A, CAMACHO-HÜBNER C, SAVAGE M O, et al. Intrauterine growth retardation and postnatal growth failure associated with deletion of the insulin-like growth factor I gene[J]. New England Journal of Medicine, 1996, 335(18): 1363-1367.DOI: 10.1056/NEJM199610313351805.
[26] TENUTA M, CARLOMAGNO F, CANGIANO B, et al. Somatotropic-testicular axis: a crosstalk between GH/IGF-I and gonadal hormones during development, transition, and adult age[J]. Andrology, 2021, 9(1): 168-184.DOI: 10.1111/andr.12918.
[27] McGLADE E A, HERRERA G G, STEPHENS K K, et al. Cell-type specific analysis of physiological action of estrogen in mouse oviducts[J]. The FASEB Journal, 2021, 35(5): e21563.DOI: 10.1096/fj.202002747R.
[28] CANNARELLA R, MANCUSO F, ARATO I, et al. Sperm-carried IGF2 downregulated the expression of mitogens produced by Sertoli cells: a paracrine mechanism for regulating spermatogenesis?[J]. Frontiers in Endocrinology, 2022, 13: 1010796.DOI: 10.3389/fendo.2022.1010796.
[29] DAI N, ZHAO L P, WRIGHTING D, et al. IGF2BP2/IMP2-deficient mice resist obesity through enhanced translation of Ucp1 mRNA and other mRNAs encoding mitochondrial proteins[J]. Cell Metabolism, 2015, 21(4): 609-621.DOI: 10.1016/j.cmet.2015.03.006.
[30] LAGGAI S, KESSLER S M, BOETTCHER S, et al. The IGF2 mRNA binding protein p62/IGF2BP2-2 induces fatty acid elongation as a critical feature of steatosis[J]. Journal of Lipid Research, 2014, 55(6): 1087-1097.DOI: 10.1194/jlr.M045500.
[31] SIMPSON A, PETNGA W, MACAULAY V M, et al. Insulin-like growth factor (IGF) pathway targeting in cancer: role of the IGF axis and opportunities for future combination studies[J]. Targeted Oncology, 2017, 12(5): 571-597.DOI:10.1007/s11523-017-0514-5.
[1] LI Yayuan, WANG Guangxing, LI Xinwen, GUO Zhenhua, GUAN Guijun. Expression of nup58 in Medaka and Its Potential Role in Sex Differentiation [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(1): 168-179.
[2] WU Xia, XU Yilan, WEN Luting, HUANG Yin, QIN Junqi, ZHOU Kangqi, DU Xuesong, CHEN Zhong, PAN Xianhui, BIN Shiyu. Observation on the Composition, Distribution and Pigment Content of Chromatophores in Rice Flower Carp in Quanzhou, China [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(6): 222-229.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Ning, LIU Min. Application of Radial Basis Function Approach on Nuclear Mass Predictions[J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(3): 59 -63 .
[2] A Yaolin, WANG Yaohui, DONG Jinchao, LI Jianfeng. In-situ Raman Spectroscopy Study of Electrocatalytic Reaction Process[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 183 -198 .
[3] WU Haifeng, ZHANG Jin, LU Zujun, SHANG Changhua. Research Progress of Bacteria and Proteases for Sauce-flavor Baijiu Daqu[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 398 -405 .
[4] DONG Shulong, MA Jiangming, XIN Wenjie. Research Progress and Trend of Landscape Visual Evaluation —Knowledge Atlas Analysis Based on CiteSpace[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 1 -13 .
[5] MO Lili, ZHOU Zihao, LI Dinghong, ZENG Wenlong, WU Zhengjun, HUANG Jinlong, SUN Tao. Research on Luring Effect of 8 Metabolites on Procambarus clarkii[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 143 -151 .
[6] YUAN Jingjing, ZHENG Yuzhao, XU Chenfeng, YIN Tingjie. Advances in Cytoplasmic Delivery Strategies for Non-Endocytosis-Dependent Biomolecules[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(1): 1 -8 .
[7] TU Guangsheng, KONG Yongjun, SONG Zhechao, YE Kang. Research Progress and Technical Difficulties of Reversible Data Hiding in Encrypted Domain[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(2): 1 -15 .
[8] YANG Yangyang, ZHU Zhenting, YANG Cuiping, LI Shihao, ZHANG Shu, FAN Xiulei, WAN Lei. Research Progress of Anaerobic Digestion Pretreatment of Excess Activated Sludge Based on Bibliometric Analysis[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(2): 16 -29 .
[9] XU Lunhui, LI Jinlong, LI Ruonan, CHEN Junyu. Missing Traffic Data Recovery for Road Network Based on Dynamic Generative Adversarial Network[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(2): 30 -40 .
[10] YANG Hai, XIE Yaqin. Regional Energy Storage Allocation Strategy of 5G Base Station Based on Floyd Algorithm[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(2): 41 -54 .