Journal of Guangxi Normal University(Natural Science Edition) ›› 2021, Vol. 39 ›› Issue (3): 62-68.doi: 10.16088/j.issn.1001-6600.2020091101
Previous Articles Next Articles
ZHONG Liming, FAN Jianghua*
CLC Number:
[1]WARBURTON A R. Quasiconcave vector maximization: connectedness of the sets of Pareto-optimal and weak Pareto-optimal alternatives[J]. Journal of Optimization Theory and Applications, 1983, 40(4): 537-557. [2]HELBIG S. On the connectedness of the set of weakly efficient points of a vector optimization problem in locally convex spaces[J]. Journal of Optimization Theory and Applications, 1990, 65(2): 257-270. [3]HU Y D, SUN E J. Connectedness of the efficient set in strictly quasiconcave vector maximization[J]. Journal of Optimization Theory and Applications, 1993, 78(3): 613-622. [4]CHEN G Y, LI S J. Existence of solutions for a generalized vector quasivariational inequality[J]. Journal of Optimization Theory and Applications, 1996, 90(2): 321-334. [5]GONG X H, YAO J C. Connectedness of the set of efficient solutions for generalized systems[J]. Journal of Optimization Theory and Applications, 2008, 138(2): 189-196. [6]曹敏, 陈剑尘, 高洁. 集值优化问题强有效解集的连通性[J]. 数学的实践与认识, 2014, 44(9): 253-258. [7]巨兴兴,陈加伟,张俊容,等.含参广义向量均衡问题近似解集的连通性[J]. 应用数学和力学, 2018, 39(10): 1206-1212. [8]XU Y D, ZHANG P P. Connectedness of solution sets of strong vector equilibrium problems with an application[J]. Journal of Optimization Theory and Applications, 2018, 178(1): 131-152. [9]李科科,彭再云,赵勇,等.含参广义集值强向量平衡问题的稳定性[J]. 数学学报,2019,62(4): 653-662. [10]FLORES-BAZAN F, VERA C. Characterization of the nonemptiness and compactness of solution sets in convex and nonconvex vector optimization[J]. Journal of Optimization Theory and Applications, 2006, 130(2): 185-207. [11]CHEN Z. Asymptotic analysis in convex composite multiobjective optimization problems[J]. Journal of Global Optimization, 2013, 55(3): 507-520. [12]LEE G M, BU I J. On solution sets for affine vector variational inequality[J]. Nonlinear Analysis: Theory Methods Applications, 2005, 63(5/6/7): 1847-1855. [13]AUBIN J P, EKELAND I.Applied nonlinear analysis[M].New York:Wiley, 1984. [14]LEE G M, KIM D S, LEE B S, et al. Vector variational inequality as a tool for studying vector optimization problems[J]. Nonlinear Analysis: Theory Methods Applications, 1998, 34(5): 745-765. [15]AUSLENDER A, TEBOULLE M. Asymptotic cones and functions in optimization and variational inequalities[M]. New York: Springer, 2003. [16]DENG S. Characterizations of the nonemptiness and boundedness of weakly efficient solution sets of convex vector optimization problems in real Banach spaces[J]. Journal of Optimization Theory and Applications, 2009, 140(1): 1-7. [17]SALINETTI R, WETS J B. On the relations between two types of convergence for convex functions[J]. Journal of Mathematical Analysis and Applications, 1977, 60(1): 211-226. |
No related articles found! |
|