|
广西师范大学学报(自然科学版) ›› 2017, Vol. 35 ›› Issue (2): 66-72.doi: 10.16088/j.issn.1001-6600.2017.02.010
黄开娇, 肖飞雁*
HUANG Kaijiao, XIAO Feiyan*
摘要: 本文建立了一类带Bedding-DeAngelis功能反应和Lévy噪声的随机捕食-被捕食系统,利用构建Lyapunov函数和停时技巧证明了该系统存在唯一的全局正解。在此基础上,通过构建函数证明这个解是随机最终有界的。最后,给出了物种趋于灭绝的充分条件。
中图分类号:
[1] HOLLING C S. Some characteristics of simple types of predation and parasitism[J]. The Canadian Entomologist, 1959,91(7): 385-398. DOI:10.4039/Ent91385-7. [2] BEDDINGTON J R. Mutual interference between parasites or predators and its effect on searching efficiency[J]. Journal of Animal Ecology, 1975,44(1):331-340. DOI:10.2307/3866. [3] HWANG T W. Global analysis of the predator-prey system with Beddington-DeAngelis functional response[J]. Journal of Mathematical Analysis and Applications, 2003, 281(1): 395-401. DOI:10.1016/S0022-247X(02)00395-5. [4] XU Shenghu, L Weidong, LI Xiangfeng. Existence of global sulutions for a prey-predator model with Beddington-DeAngelis functional response and cross-diffusion[J]. Mathematica Applicata, 2009, 22(4):821-827. [5] 汪洋. 具有Beddington-DeAngelis功能反应随机捕食者-食模型种群动力学分析[D]. 哈尔滨:哈尔滨工业大学, 2011. [6] BAO Jianhai, MAO Xuerong, YIN G, et al. Competitive Lotka-Volterra population dynamics with jumps[J]. Nonlinear Analysis: Theory, Methods & Applications, 2011, 74(17): 6601-6616. DOI:10.1016/j.na.2011.06.043. [7] BAO Jianhai, YUAN Chenggui. Stochastic population dynamics driven by Lévy noise[J]. Journal of Mathematical Analysis and Applications, 2012, 391(2): 363-375. DOI:10.1016/j.jmaa.2012.02.043. [8] MAO Xuerong. Stochastic differential equations and their application[M]. Chichester: Horwood Publishing Limited, 1997:51-59. [9] HWANG T W. Uniqueness of limit cycles of the predator-prey system with Beddington-DeAngelis functional response[J]. Journal of Mathematical Analysis and Applications, 2004, 290(1): 113-122. DOI:10.1016/j.jmaa.2003.09.073. [10] MAO Xuerong, YUAN Chenggui, ZOU Jiezhong. Stochastic differential delay equations of population dynamics[J]. Journal of Mathematical Analysis and Applications, 2005, 304(1): 296-320. DOI:10.1016/j.jmaa.2004.09.027. [11] 王克. 随机生物数学模型[M]. 北京:科学出版社, 2010. |
[1] | 李淑一, 韦煜明, 彭华勤. 含Ornstein-Uhlenbeck过程的随机SIS传染病模型[J]. 广西师范大学学报(自然科学版), 2020, 38(4): 74-81. |
[2] | 李海燕, 韦煜明, 彭华勤. 具有双疾病的随机SIRS传染病模型的灭绝性与持久性分析[J]. 广西师范大学学报(自然科学版), 2020, 38(2): 144-155. |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |