广西师范大学学报(自然科学版) ›› 2017, Vol. 35 ›› Issue (2): 58-65.doi: 10.16088/j.issn.1001-6600.2017.02.009

• • 上一篇    下一篇

具有非线性传染率及脉冲免疫接种的SIQR传染病模型

邢伟1, 高晋芳2, 颜七笙1*, 周其华1   

  1. 1.东华理工大学理学院,江西南昌330013;
    2.华东交通大学理工学院,江西南昌330013
  • 出版日期:2017-07-25 发布日期:2018-07-25
  • 通讯作者: 颜七笙(1975—),男,江西临川人,东华理工大学教授,博士。E-mail:qshyan@ecit.cn
  • 基金资助:
    国家自然科学基金(11661005);江西省高等学校教学改革研究项目(JXJG-15-6-22);江西省教育厅科学技术研究项目(GJJ14469)

An SIQR Epidemic Model with Nonlinear Incidence Rateand Impulsive Vaccination

XING Wei1,GAO Jinfang2,YAN Qisheng1*,ZHOU Qihua1   

  1. 1.School of Science,East China University of Technology,Nanchang Jiangxi 330013,China;
    2.Institute of Technology,East China Jiaotong University,Nanchang Jiangxi 330013,China
  • Online:2017-07-25 Published:2018-07-25

摘要: 本文研究了具有非线性传染率及脉冲免疫接种的SIQR模型,采用非线性传染率βI(t)(1+vI(t))S(t)得到了疾病流行与否的阈值,并且利用Floquet定理及比较定理证明了无病周期解的存在性与全局渐近稳定性,最后讨论了系统疾病一致持续的充分条件。研究结果表明:当参数满足一些条件时,疾病永久存在不会消亡,丰富了传染病动力学的理论知识。

关键词: 非线性传染率, SIQR模型, 全局渐近稳定性, 一致持续

Abstract: An SIQR epidemic model with vertical transmission and impulsive vaccination is investigated in this paper. Nonlinear infection rate of βI(t)(1+vI(t))S(t) is used and the threshold of disease popularity is obtained. The Floquet theorem and the comparison theorem are used to prove the existence and globally asymptotical stability of the disease-free periodic solution. Sufficient conditions for the uniform persistence of the system are obtained in the end.The results show that when the parameters satisfy some conditions, the disease does not perish.At the same time, the knowledge of dynamics of infectious diseases is enriched.

Key words: nonlinear incidence rate, SIQR model, globally asymptotical stability, uniform persistence

中图分类号: 

  • O175.14
[1] TIAN Yanni, LIU Xianning.Global dynamics of a virus dynamical model with general incidence rate and cure rate[J].Nonlinear Analysis: Real World Applications 2014,16:17-26. DOI:10.1016/j.nonrwa.2013.09.002.
[2] MENG Xinzhu,CHEN Lansun. Global dynamical behaviors for an SIR epidemic model with time delay and pulse vaccination[J].Taiwanese Journal of Mathematics,2008,12(5):1107-1122.
[3] MENG Xinzhu,CHEN Lansun.The dynamics of a new SIR epidemic model concerning pulse vaccination strategy[J]. Applied Mathematics and Computation,2008,197(2):582-597. DOI:10.1016/j.amc.2007.07.083.
[4] 赵文才,孟新柱.具有垂直传染的SIR脉冲预防接种模型[J].应用数学,2009,22(3):676-682.
[5] 宋燕,刘薇,张宇.具有垂直传染及脉冲免疫接种的SIQR传染病模型[J].兰州大学学报(自然科学版),2014,50(2):251-254. DOI:10.13885/j.issn.0455-2059.2014.02.002.
[6] 靳祯,马知恩.具有连续和脉冲预防接种的SIRS传染病模型[J].华北工学院学报,2003,24(4):235-243.
[7] 邢伟,颜七笙,杨志辉,等.一类具有非线性传染率的SEIS传染病模型的稳定性分析[J].应用数学和力学,2016,37(11):1247-1254. DOI:10.21656/1000-0887.370166.
[8] Van den DRIESSCHE P,WATMOUGH J.A simple SIS epidemic model with a backward bifurcation[J]. Journal of Mathematical Biology,2000,40(6):525-540. DOI:10.1007/s002850000032.
[9] Van den DRIESSCHE P,WATMOUGH J.Epidemic solutions and endemic and endemic catastrophes[M]// RUAN Shigui, WOLKOWICZ G S K, WU Jianhong. Dynamical System and Their Application in Biology: Fields Institute Communications Volume 36. Providence, RI:AMS, 2003:247-257.
[10] ALEXANDER M E,MOGHADAS S M. Periodicity in an epidemic model with a generalized non-linear incidence[J]. Mathematical Biosciences, 2004, 189(1):75-96. DOI:10.1016/j.mbs.2004.01.003.
[11] 肖燕妮,周义仓,唐三一.生物数学原理[M].西安:西安交通大学出版社,2012:225-240.
[1] 郑涛, 周欣然, 张龙. 三种群捕食-竞争-合作混杂模型的全局渐近稳定性[J]. 广西师范大学学报(自然科学版), 2020, 38(5): 64-70.
[2] 苗新艳, 张龙, 罗颜涛, 潘丽君. 一类交替变化的竞争—合作混杂种群模型研究[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 25-31.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发