广西师范大学学报(自然科学版) ›› 2024, Vol. 42 ›› Issue (3): 206-218.doi: 10.16088/j.issn.1001-6600.2023110701

• 研究论文 • 上一篇    下一篇

强肝胶囊治疗非酒精性脂肪性肝病网络药理学研究

张兵1, 唐鑫1, 陈聪1, 宁嘉怡1, 周异欢1, 年四昀2, 余启明1,3*, 谭相端1*   

  1. 1.桂林医学院 药学院, 广西 桂林 541199;
    2.浙江司太立制药股份有限公司, 浙江 仙居 317300;
    3.桂林医学院 公共卫生学院, 广西 桂林 541199
  • 收稿日期:2023-11-07 修回日期:2023-12-06 发布日期:2024-05-31
  • 通讯作者: 余启明(1987—), 男, 广西柳州人, 桂林医学院副教授, 博士。E-mail: qm_yu19@glmc.edu.cn;谭相端(1980—), 男, 广西河池人, 桂林医学院教授, 博士。E-mail: tandy@glmc.edu.cn
  • 基金资助:
    国家自然科学基金(82060627, 82360678)

Analysis of Network Pharmacology of Qianggan Capsulein in Treating Nonalcoholic Fatty Liver Disease

ZHANG Bing1, TANG Xin1, CHEN Cong1, NING Jiayi1, ZHOU Yihuan1, NIAN Siyun2, YU Qiming1,3 *, TAN Xiangduan1*   

  1. 1. College of Pharmacy, Guilin Medical University, Guilin Guangxi 541199, China;
    2. Zhejiang Starry Pharmaceutical Co., Ltd, Xianju Zhejiang 317300, China;
    3. School of Public Health, Guilin Medical University, Guilin Guangxi 541199, China
  • Received:2023-11-07 Revised:2023-12-06 Published:2024-05-31

摘要: 基于多靶点虚拟筛选、网络药理学分析和体外实验,探讨强肝胶囊(QGC)治疗非酒精性脂肪性肝病(NAFLD)的潜在作用机制。利用基于PPARα/γ、FXR 及 sEH的多靶点虚拟筛选选出QGC中具有治疗 NAFLD的活性成分,运用网络药理学预测活性成分靶点、疾病相关靶点,筛选调控疾病的关键靶点,通过Discovery Studio 2020软件和Gromacs软件对关键活性成分和关键靶点进行分子对接和分子动力学模拟分析。最后,通过实验验证QGC中的关键活性成分对肝细胞脂肪变性的改善作用。多靶点虚拟筛选得到235个 QGC活性成分,网络药理学分析得到320个成分-疾病共同靶点。分子对接结果表明,芹菜素、异鼠李素、迷迭香酸、大黄素甲醚、木犀草素与关键靶点PTPN1、PPARα、PPARγ、AR具有良好的结合能力。分子动力学模拟进一步验证了迷迭香酸、大黄素甲醚等化合物与关键靶点具有良好的结合稳定性。体外实验结果显示, 5个关键活性成分均能改善HepG2细胞的脂肪变性,其中异鼠李素、迷迭香酸、大黄素甲醚改善细胞脂肪变性模型的效果最佳。本研究通过多层面探讨,为QGC在NAFLD治疗中的开发和应用提供理论依据。

关键词: 强肝胶囊, 非酒精性脂肪性肝病, 多靶点虚拟筛选, 网络药理学, 作用机制

Abstract: This study preliminarily investigated the potential mechanisms of the Qianggan capsule (QGC) in treating nonalcoholic fatty liver disease (NAFLD) through a combination of multi-target virtual screening, network pharmacology, and in vitro experiment verification. A multi-target virtual screening based on PPARα/γ, FXR and sEH was utilized to select the active ingredients in QGC with therapeutic properties for NAFLD. The systematic pharmacological approach has been used to predict active ingredient targets and disease-relevant targets, and ultimately to screen key targets for disease modulation. Molecular docking and molecular dynamics simulation analysis of key active ingredients and key targets were performed through Discovery Studio 2020 software and Gromacs software. Finally, an experimental verification of the efficacy of the key compounds in the mitigation of hepatocyte steatosis was carried out. The results indicated that 235 active ingredients of QGC and 320 ingredients-disease common targets were identified by multiple-target virtual screening and network pharmacology analysis, respectively. Molecular docking revealed that apigenin, isorhamnetin, rosmarinic acid, physcion, and luteolin showed strong binding capacity to PTPN1, PPARα, PPARγ, and AR, respectively. Molecular dynamics simulations further verified that compounds such as rosmarinic acid and physcion had good binding stability with key targets. In vitro testing showed that the five key active ingredients could improve the steatosis of HepG2 cells. Notably, rosmarinic acid, physcion, and isorhamnetin exhibited the highest potency among them. This study provides a theoretical basis for the development and application of QGC in the treatment of NAFLD through multi-level discussions.

Key words: Qianggan capsule, nonalcoholic fatty liver disease, multi-target virtual screening, network pharmacology, mechanism

中图分类号:  R285

[1] LAZARUS J V, MARK H E, ANSTEE Q M, et al. Advancing the global public health agenda for NAFLD: a consensus statement[J]. Nature Reviews Gastroenterology & Hepatology, 2022, 19: 60-78. DOI: 10.1038/s41575-021-00523-4.
[2] ESKRIDGE W, VIERLING J M, GOSBEE W, et al. Screening for undiagnosed non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH): a population-based risk factor assessment using vibration controlled transient elastography (VCTE)[J]. Plos One, 2021, 16: e0260320. DOI: 10.1371/journal.pone.0260320.
[3] CARIELLO M, PICCININ E, MOSCHETTA A. Transcriptional regulation of metabolic pathways via lipid-sensing nuclear receptors PPARs, FXR, and LXR in NASH[J].Cellular and Molecular Gastroenterology and Hepatology, 2021, 11: 1519-1539. DOI: 10.1016/j.jcmgh.2021.01.012.
[4] JAIN M R, GIRI S R, BHOI B, et al. Dual PPARα/γ agonist saroglitazar improves liver histopathology and biochemistry in experimental NASH models[J].Liver International, 2018, 38: 1084-1094. DOI: 10.1111/liv.13634.
[5] KAUL U, PARMAR D, MANJUNATH K, et al. New dual peroxisome proliferator activated receptor agonist-Saroglitazar in diabetic dyslipidemia and non-alcoholic fatty liver disease: integrated analysis of thereal-world evidence[J]. Cardiovascular Diabetology, 2019, 18: 80. DOI: 10.1186/s12933-019-0884-3.
[6] SUN L L, CAI J, GONZALEZ F J. The role of farnesoid X receptor in metabolic diseases, and gastrointestinal and liver cancer[J].Nature Reviews. Gastroenterology & Hepatology, 2021, 18(5): 335-347. DOI: 10.1038/s41575-020-00404-2.
[7] FIORUCCI S, BIAGIOLI M, SEPE V, et al. Bile acid modulators for the treatment of nonalcoholic steatohepatitis (NASH)[J].Expert Opinion on Investigational Drugs, 2020, 29: 623-632. DOI: 10.1080/13543784.2020.1763302.
[8] SCHMIDT J, ROTTER M, WEISER T, et al. A dual modulator of farnesoid X receptor and soluble epoxide hydrolase to counter nonalcoholic steatohepatitis[J].Journal of Medicinal Chemistry, 2017, 60(18): 7703-7724. DOI: 10.1021/acs.jmedchem.7b00398.
[9] YOUNOSSI Z, ANSTEE Q M, MARIETTI M, et al. Global burden ofNAFLD and NASH: trends, predictions, risk factors and prevention[J]. Nature Reviews Gastroenterology & Hepatology, 2018, 15(1): 11-20. DOI: 10.1038/nrgastro.2017.109.
[10] ZHOU H L, MA C, WANG C, et al. Research progress in use of traditional Chinese medicine monomer for treatment of non-alcoholic fatty liver disease[J].European Journal of Pharmacology, 2021, 898: 173976. DOI: 10.1016/j.ejphar.2021.173976.
[11] 丁向春, 马丽娜, 张 栩. 强肝胶囊对慢性肝病肝纤维化指标的影响[J]. 中国中西医结合消化杂志, 2003, 11(6): 351-352. DOI: 10.3969/j.issn.1671-038X.2003.06.011.
[12] 柳琳琳, 毛德文, 吕建林, 等. 强肝胶囊对非酒精性脂肪性肝病患者疗效及安全性的Meta分析[J]. 中成药, 2018, 40(8): 1715-1720. DOI: 10.3969/j.issn.1001-1528.2018.08.009.
[13] 郝丽红. 强肝胶囊对非酒精性脂肪肝患者临床症状改善情况及肝功能的影响[J]. 实用临床医药杂志, 2015, 19(1): 126-127. DOI: 10.7619/jcmp.201501040.
[14] 李 凯, 李爱秀, 靳玉瑞, 等. 天然产物来源的抗HIV-多靶点抑制剂研究进展[J]. 中草药, 2015, 46(12): 1840-1848. DOI: 10.7501/j.issn.0253-2670.2015.12.025.
[15] 梁林盼, 凌雪, 方姣, 等. 基于网络药理学和分子对接探讨瑶山甜茶治疗2型糖尿病的作用机制[J]. 广西师范大学学报(自然科学版), 2023, 41(1): 143-154. DOI: 10.16088/j.issn.1001-6600.2021112401.
[16] 张 琴, 张陆勇, 江振洲. 过氧化物酶体增殖物激活受体激动剂安全性研究进展[J]. 中国药物警戒, 2023, 20(8): 950-955. DOI: 10.19803/j.1672-8629.20230001.
[17] SUN C P, ZHANG X Y, MORISSEAU C, et al. Discovery of soluble epoxide hydrolase inhibitors from chemical synthesis and natural products[J]. Journal of Medicinal Chemistry, 2021, 64(1): 184-215. DOI: 10.1021/acs.jmedchem.0c01507.
[18] 郑维艳, 曹坤芳. 未来气候变化对四种木姜子地理分布的影响[J]. 广西植物, 2020, 40(11): 1584-1594. DOI: 10.11931/guihaia.gxzw201904020.
[19] 赵丽萍, 程阳阳, 范田运, 等. 全新结构吲哚类生物碱的合成及降甘油三酯活性研究[J]. 药学学报, 2022, 57(2):433-440. DOI: 10.16438/j.0513-4870.2021-1439.
[20] YOUNOSSI Z M. Non-alcoholic fatty liver disease:a global public health perspective[J]. Journal of Hepatology, 2019, 70(3): 531-544. DOI: 10.1016/j.jhep.2018.10.033.
[21] GALLARDO-RINCÓN H, CANTORAL A, ARRIETA A, et al. Type 2 diabetes in Latin America and the Caribbean: regional and country comparison on prevalence, trends, costs and expanded prevention[J]. Primary Care Diabetes, 2021, 15(2): 352-359. DOI: 10.1016/j.pcd.2020.10.001.
[22] 白丽华. 强肝胶囊联合二甲双胍治疗非酒精性脂肪肝疗效观察[J]. 现代中西医结合杂志, 2016, 25(15): 1667-1668, 1674. DOI: 10.3969/j.issn.1008-8849.2016.15.025.
[23] 郭彦伸, 郭宗儒. 多靶点药物分子设计[J]. 药学学报, 2009, 44(3): 276-281. DOI: 10.16438/j.0513-4870.2009.03.016.
[24] LI Z T, ZHANG F X, FAN C L, et al. Discovery of potential Q-marker of traditional Chinese medicine based on plant metabolomics and network pharmacology: periplocae cortex as an example[J]. Phytomedicine, 2021, 85: 153535. DOI: 10.1016/j.phymed.2021.153535.
[25] WANG X, WANG Z Y, ZHENG J H, et al. TCM network pharmacology: a new trend towards combining computational, experimental and clinical approaches[J]. Chinese Journal of Natural Medicines, 2021, 19: 1-11. DOI: 10.1016/S1875-5364(21)60001-8.
[26] MUZUROVIC′ E, MIKHAILIDIS D P, MANTZOROS C. Non-alcoholic fatty liver disease, insulin resistance, metabolic syndrome and their association with vascular risk[J]. Metabolism, 2021, 119: 154770. DOI: 10.1016/j.metabol.2021.154770.
[27] YAMAGISHI S, MATSUI T. Role of receptor for advanced glycation end products (RAGE) in liver disease[J]. European Journal of Medical Research, 2015, 20(1): 15. DOI: 10.1186/s40001-015-0090-z.
[28] HYOGO H, YAMAGISHI S I. Advanced glycation end products (AGEs) and their involvement in liver disease[J]. Current Pharmaceutical Design, 2008, 14: 969-972. DOI: 10.2174/138161208784139701.
[29] BASTA G, NAVARRA T, DE SIMONE P, et al. What is the role of the receptor for advanced glycation end products-ligand axis in liver injury?[J]. Liver Transplantation, 2011, 17: 633-640. DOI: 10.1002/lt.22306.
[30] ZHANG T P, HU J J, WANG X M, et al. MicroRNA-378 promotes hepatic inflammation and fibrosis via modulation of the NF-κB-TNFα pathway[J]. Journal of Hepatology, 2019, 70: 87-96. DOI: 10.1016/j.jhep.2018.08.026.
[31] MOHALLEM R, ARYAL U K. Regulators of TNFα mediated insulin resistance elucidated by quantitative proteomics[J]. Scientific Reports, 2020, 10: 20878. DOI: 10.1038/s41598-020-77914-1.
[32] WANDRER F, LIEBIG S, MARHENKE S, et al. TNF-Receptor-1 inhibition reduces liver steatosis, hepatocellular injury and fibrosis in NAFLD mice[J]. Cell Death & Disease, 2020, 11: 212. DOI: 10.1038/s41419-020-2411-6.
[33] NIETO-VAZQUEZ I, FERNÁNDEZ-VELEDO S, DE ALVARO C, et al. Protein-tyrosine phosphatase 1B-deficient myocytes show increased insulin sensitivity and protection against tumor necrosis factor-α-induced insulin resistance[J]. Diabetes, 2007, 56: 404-413. DOI: 10.2337/db06-0989.
[34] KERSTEN S, STIENSTRA R. The role and regulation of the peroxisome proliferator activated receptor alpha in human liver [J]. Biochimie, 2017, 136: 75-84. DOI: 10.1016/j.biochi.2016.12.019.
[35] SUN X, ZHANG Y, XIE M L. The role of peroxisome proliferator-activated receptor in the treatment of non-alcoholic fatty liver diseases[J]. Acta Pharmaceutica, 2017, 67: 1-13. DOI: 10.1515/acph-2017-0007.
[36] KRYCER J R, BROWN A J. Cross-talk between the androgen receptor and the liver X receptor: implications for cholesterol homeostasis[J]. The Journal of Biological Chemistry, 2011, 286: 20637-20647. DOI: 10.1074/jbc.M111.227082.
[37] HEO J H, LEE S R, JO S L, et al. Hepatic LKB1 reduces the progression of non-alcoholic fatty liver disease via genomic androgen receptor signaling[J]. International Journal of Molecular Sciences, 2021, 22: 7904. DOI: 10.3390/ijms22157904.
[38] ZHANG S, ZHENG L L, DONG D S, et al. Effects of flavonoids from Rosa laevigata Michx fruit against high-fat diet-induced non-alcoholic fatty liver disease in rats[J]. Food Chemistry, 2013, 141: 2108-2116. DOI: 10.1016/j.foodchem.2013.05.019.
[39] LIU N, FENG J, LU X Y, et al. Isorhamnetin inhibits liver fibrosis by reducing autophagy and inhibiting extracellular matrix formation via the TGF-β1/Smad3 and TGF-β1/p38 MAPK pathways[J]. Mediators of Inflarnmation, 2019, 2019: 6175091. DOI: 10.1155/2019/6175091.
[40] 黄丽君, 卢启明, 麦平, 等. 迷迭香酸改善小鼠肝功能,炎症水平及肝纤维化的研究[J]. 甘肃科技纵横, 2017, 46(10): 86-88. DOI: 10.3969/j.issn.1672-6375.2017.10.024.
[41] ZHAO Y L, WANG J B, ZHOU G D,et al. Investigations of free anthraquinones from rhubarb against alpha-naphthylisothiocyanate-induced cholestatic liver injury in rats[J]. Basic & Clinical Pharmacology & Toxicology, 2009, 104(6): 463-469. DOI: 10.1111/j.1742-7843.2009.00389.x.
[42] 王 新, 张 磊, 蔡 皓, 等. 木犀草素改善高脂饮食诱导的小鼠非酒精性脂肪肝[J]. 合肥工业大学学报(自然科学版), 2016, 39: 994-997. DOI: 10.3969/j.issn.1003-5060.2016.07.025.
[43] BIOLATO M, MANCA F, MARRONE G, et al. Intestinal permeability after Mediterranean diet and low-fat diet in non-alcoholic fatty liver disease[J]. World Journal of Gastroenterology, 2019, 25: 509-520. DOI: 10.3748/wjg.v25.i4.509.
[44] 陈 聪, 周香辉, 张 兵, 等. 基于网络药理学及计算机辅助药物设计研究护肝宁片治疗非酒精性脂肪性肝病的作用机制[J]. 药学学报, 2023, 58: 695-710. DOI: 10.16438/j.0513-4870.2022-1046.
[1] 吴慧婕, 黄晓梅, 梁芬兰, 黄欣, 雷梦颖, 周艳林, 刘雪梅, 王刚. 黄杜鹃根化学成分及镇痛网络药理学研究[J]. 广西师范大学学报(自然科学版), 2024, 42(1): 147-155.
[2] 梁林盼, 凌雪, 方姣, 苏志恒, 郑华. 基于网络药理学和分子对接探讨瑶山甜茶治疗2型糖尿病的作用机制[J]. 广西师范大学学报(自然科学版), 2023, 41(1): 143-154.
[3] 蒋向辉, 谭荣, 杨永平, 肖清淙. 十大功劳甘草汤治疗肝炎的网络药理学研究[J]. 广西师范大学学报(自然科学版), 2021, 39(5): 198-209.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发