|
广西师范大学学报(自然科学版) ›› 2024, Vol. 42 ›› Issue (1): 102-110.doi: 10.16088/j.issn.1001-6600.2023030401
曾亮1,2*, 胡谦1,2, 杨腾飞1,2, 谭微微1,2
ZENG Liang1,2*, HU Qian1,2, YANG Tengfei1,2, TAN Weiwei1,2
摘要: 针对变电站复杂环境中作业人员操作检测网络参数量过大、作业人员部分特征不明显等问题,本文提出一种基于L-ConvNeXt网络的变电站人员检测方法。首先,网络的主干特征提取部分由轻量化ConvNeXt模块搭建而成,保证网络特征提取能力同时使主干部分保持较低的参数量;其次,选择TPH(Transformer prediction head)作为网络末端检测头,加强网络对低分辨率特征的检测;最后,引用VariFocal Loss作为目标损失函数中的分类损失和置信度损失,进一步增加网络对正样本的损失权重。在天池公共数据集上的实验结果表明:本文网络模型获得较好的检测效果,其平均检测精度达到89.6%,模型参数量为13.2×106,能够有效地检测变电站人员的作业情况,满足变电站复杂场景下的检测需求。
中图分类号: TP391.41
[1] STEMN E, BOFINGER C, CLIFF D, et al. Failure to learn from safety incidents: status, challenges and opportunities[J]. Safety Science, 2018, 101: 313-325. DOI: 10.1016/j.ssci.2017.09.018. [2] 国家能源局. 2021年一季度事故分析报告[EB/OL]. (2021-08-10)[2023-03-04]. http://www.nea.gov.cn/2021-08/10/c_1310119210.htm. [3] 国家能源局. 2021年二季度事故分析报告[EB/OL]. (2021-09-08)[2023-03-04]. http://www.nea.gov.cn/2021-09/08/c_1310175817.htm. [4] 杜思远. 变电站人员安全帽佩戴识别算法研究[D]. 重庆: 重庆大学, 2017. [5] FELZENSZWALB P F, GIRSHICK R B, MCALLESTER D, et al. Object detection with discriminatively trained part-based models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(9): 1627-1645. DOI: 10.1109/TPAMI.2009.167. [6] 胡金磊, 周俊煌, 林孝斌, 等. 基于S-HOG+C算子的变电作业人员着装分析方法研究[J]. 机电工程技术, 2018, 47(12): 136-140. DOI: 10.3969/j.issn.1009-9492.2018.12.043. [7] 吴育武. 适应变电站智能安全监控的运动目标检测及人脸快速识别方法[J]. 机电工程技术, 2019, 48(11): 52-55, 126. DOI: 10.3969/j.issn.1009-9492.2019.11.019. [8] 严良平, 童静, 王凯, 等. 基于FAST特征的智能安全帽静态报警方法的研究[J]. 电力信息与通信技术, 2019, 17(4): 67-71. DOI: 10.16543/j.2095-641x.electric.power.ict.2019.04.011. [9] 魏明军, 周太宇, 纪占林, 等. 基于YOLOv3的公共场所口罩佩戴检测方法[J]. 广西师范大学学报(自然科学版), 2023, 41(1): 76-86. DOI: 10.16088/j.issn.1001-6600.2022030402. [10] 李洋, 苟刚. 基于改进YOLOX 的轻量型垃圾分类检测方法[J]. 广西师范大学学报(自然科学版), 2023, 41(3): 80-90. DOI: 10.16088/j.issn.1001-6600.2022100804. [11] FANG Q, LI H, LUO X C, et al. Detecting non-hardhat-use by a deep learning method from far-field surveillance videos[J]. Automation in Construction, 2018, 85: 1-9. DOI: 10.1016/j.autcon.2017.09.018. [12] 杨永波, 李栋. 改进YOLOv5的轻量级安全帽佩戴检测算法[J]. 计算机工程与应用, 2022, 58(9): 201-207. DOI: 10.3778/j.issn.1002-8331.2111-0346. [13] 丘浩, 张炜, 彭博雅, 等. 基于YOLOv3的特定电力作业场景下的违规操作识别算法[J]. 电力科学与技术学报, 2021, 36(3): 195-202. DOI: 10.19781/j.issn.1673-9140.2021.03.024. [14] REDMON J, FARHADI A. YOLOv3: an incremental improvement[EB/OL]. (2018-04-08)[2023-03-04]. https://arxiv. org/abs/1804.02767. DOI: 10.48550/arXiv.1804.02767. [15] 王时威. 基于深度学习的电力作业异常行为识别系统的设计与实现[D]. 武汉: 武汉纺织大学, 2021. DOI: 10.27698/d.cnki.gwhxj.2021.000120. [16] 孙倩, 赵李强, 高雪林. 一种电力施工安全规范模型验证方法[J]. 云南电力技术, 2022, 50(3): 9-14. DOI: 10.3969/j.issn.1006-7345.2022.03.003. [17] 刘泽西, 张楠, 连婷, 等. 针对轻量化网络的安全帽检测方法[J]. 测控技术, 2022, 41(8): 16-21, 53. DOI: 10.19708/j.ckjs.2022.08.003. [18] 田枫, 贾昊鹏, 刘芳. 改进YOLOv5的油田作业现场安全着装小目标检测[J]. 计算机系统应用, 2022, 31(3): 159-168. DOI: 10.15888/j.cnki.csa.008359. [19] 郭奕裕, 周箩鱼. 安全帽佩戴检测网络模型的轻量化设计[J]. 计算机工程, 2023, 49(4): 312-320. DOI: 10.19678/j.issn.1000-3428.0064219. [20] LIU Z, MAO H Z, WU C Y, et al. A ConvNet for the 2020s[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2022: 11966-11976. DOI: 10.1109/CVPR52688.2022.01167. [21] KARPOV P, GODIN G, TETKO I V. A transformer model for retrosynthesis[C]// Artificial Neural Networks and Machine Learning-ICANN 2019: Workshop and Special Sessions. Cham: Springer Nature Switzerland AG, 2019: 817-830. DOI: 10.1007/978-3-030-30493-5_78. [22] HUANG J H, FANG Y Y, WU Y Z, et al. Swin transformer for fast MRI[J]. Neurocomputing, 2022, 493: 281-304. DOI: 10.1016/j.neucom.2022.04.051. [23] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2): 318-327. DOI: 10.1109/TPAMI.2018.2858826. [24] ZHANG H Y, WANG Y, DAYOUB F, et al. VarifocalNet: an IoU-aware dense object detector[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2021: 8510-8519. DOI: 10.1109/CVPR46437.2021.00841. [25] MA N N, ZHANG X Y, ZHENG H T, et al. ShuffleNet V2: practical guidelines for efficient CNN architecture design[C]// Computer Vision-ECCV 2018: LNCS Volume 11218. Cham: Springer Nature Switzerland AG, 2018: 122-138. DOI: 10.1007/978-3-030-01264-9_8. [26] ZHAO G S, WANG Y, WANG J. Lightweight intrusion detection model of the Internet of things with hybrid cloud-fog computing[J]. Security and Communication Networks, 2023, 2023: 7107663. DOI: 10.1155/2023/7107663. [27] 王媛彬, 李媛媛, 段誉, 等. 基于轻量骨干网络和注意力结构的变电设备红外图像识别[J]. 电网技术, 2023, 47(10): 4358-4369.DOI: 10.13335/j.1000-3673.pst.2022.2113. |
[1] | 黄叶祺, 王明伟, 闫瑞, 雷涛. 基于改进的YOLOv5金刚石线表面质量检测[J]. 广西师范大学学报(自然科学版), 2023, 41(4): 123-134. |
[2] | 陈文康, 陆声链, 刘冰浩, 李帼, 刘晓宇, 陈明. 基于改进YOLOv4的果园柑橘检测方法研究[J]. 广西师范大学学报(自然科学版), 2021, 39(5): 134-146. |
[3] | 刘士李, 朱晓虎, 刘丽, 方天睿. 基于模糊平滑的安徽地区110 kV GIS 变电站LCC 模糊估算模型[J]. 广西师范大学学报(自然科学版), 2020, 38(5): 24-33. |
[4] | 刘英璇, 伍锡如, 雪刚刚. 基于深度学习的道路交通标志多目标实时检测[J]. 广西师范大学学报(自然科学版), 2020, 38(2): 96-106. |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |