|
广西师范大学学报(自然科学版) ›› 2024, Vol. 42 ›› Issue (1): 91-101.doi: 10.16088/j.issn.1001-6600.2023051805
肖宇庭1, 吕晓琪1,2*, 谷宇1, 刘传强1
XIAO Yuting1, LÜ Xiaoqi1,2*, GU Yu1, LIU Chuanqiang1
摘要: 糖尿病视网膜病变是一种常见的糖尿病并发症。为提高糖尿病视网膜病变图像分级准确率,本文提出基于拆分残差网络的分级算法。通过融合归一化注意力,增强识别关键特征信息能力,使模型对病灶特征信息提取更具有针对性;利用全局上下文模块综合考虑不同尺度及网络层学习到的特征信息,进一步联系不同时期糖尿病视网膜病灶特点,增强模型表达能力;输出分类器设计多分支结构进行图像分级,提升多类别图像分级精度。实验结果得出模型准确率为94.86%,其他评价指标相比原主干网络模型均有提高。本文模型性能良好,实现了较高精度诊断分级糖尿病视网膜病变图像。
中图分类号: TP391.41
[1] 张瑶, 徐前威, 周冉冉, 等. 桃核承气汤辨治糖尿病视网膜病变的机理初探[J]. 中国中医基础医学杂志, 2023, 29(7): 1156-1159. DOI: 10.19945/j.cnki.issn.1006-3250.2023.07.025. [2] 徐盼盼, 陈长骏, 闫志文, 等. 基于MA-DRNet的糖尿病视网膜病变等级识别方法[J]. 科学技术与工程, 2023, 23(3): 1168-1175. DOI: 10.12404/j.issn.1671-1815.2023.23.03.01168. [3] DUTTA S, MANIDEEP B C, BASHA S M, et al. Classification of diabetic retinopathy images by using deep learning models[J]. International Journal of Grid and Distributed Computing, 2018, 11(1): 89-106. DOI: 10.14257/ijgdc.2018.11.1.09. [4] GULSHAN V, PENG L, CORAM M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs[J]. JAMA, 2016, 316(22): 2402-2410. DOI: 10.1001/jama.2016.17216. [5] LIU Z, MAO H Z, WU C Y, et al. A ConvNet for the 2020s[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2022: 11966-11976. DOI: 10.1109/CVPR52688.2022.01167. [6] XIE S N, GIRSHICK R, DOLLÁR P, et al. Aggregated residual transformations for deep neural networks[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2017: 5987-5995. DOI: 10.1109/CVPR.2017.634. [7] BELLO I, FEDUS W, DU X Z, et al. Revisiting ResNets: improved training and scaling strategies[EB/OL]. (2021-03-13)[2023-05-18]. https://arxiv.org/abs/2103.07579. DOI: 10.48550/arXiv.2103.07579. [8] BELLO I, ZOPH B, VASUDEVAN V, et al. Neural optimizer search with reinforcement learning[EB/OL]. (2017-09-22)[2023-05-18]. https://arxiv.org/abs/1709.07417. DOI: 10.48550/arXiv.1709.07417. [9] HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011-2023. DOI: 10.1109/TPAMI.2019.2913372. [10] 郑雯, 沈琪浩, 任佳. 基于Improved DR-Net算法的糖尿病视网膜病变识别与分级[J]. 光学学报, 2021, 41(22): 2210002. DOI: 10.3788/AOS202141.2210002. [11] 顾婷菲, 郝鹏翼, 白琮, 等. 结合多通道注意力的糖尿病性视网膜病变分级[J]. 中国图象图形学报, 2021, 26(7): 1726-1736. DOI: 10.11834/jig.200518. [12] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Advances in Neural Information Processing Systems 30 (NIPS 2017). Red Hook, NY: Curran Associates Inc., 2017: 6000-6010. [13] MA Z Q, XIE Q X, XIE P X, et al. HCTNet: a hybrid ConvNet-transformer network for retinal optical coherence tomography image classification[J]. Biosensors, 2022, 12(7): 542. DOI: 10.3390/bios12070542. [14] ZHANG H, WU C R, ZHANG Z Y, et al. ResNeSt: split-attention networks[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Los Alamitos, CA: IEEE Computer Society, 2022: 2735-2745. DOI: 10.1109/CVPRW56347.2022.00309. [15] 吴军, 欧阳艾嘉, 张琳. 基于多头注意力机制的磷酸化位点预测模型[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 161-171. DOI: 10.16088/j.issn.1001-6600.2021071301. [16] LIU Y C, SHAO Z R, TENG Y Y, et al. NAM: normalization-based attention module[EB/OL]. (2021-11-24)[2023-05-18]. https://arxiv.org/abs/2111.12419. DOI: 10.48550/arXiv.2111.12419. [17] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[EB/OL]. (2018-07-18)[2023-05-18]. https://arxiv.org/abs/1807.06521. DOI: 10.48550/arXiv.1807.06521. [18] 谢云霞, 黄海于, 胡建斌. 基于深度卷积神经网络的糖尿病视网膜病变分期及病灶检测[J]. 计算机应用, 2020, 40(8): 2460-2464. DOI: 10.11772/j.issn.1001-9081.2019122198. [19] IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[EB/OL]. (2015-03-02)[2023-05-18]. https://arxiv.org/abs/1502.03167. DOI: 10.48550/arXiv.1502.03167. [20] 马青柯. 眼底图像检测和分析系统的设计与开发[D]. 广州: 暨南大学, 2018. [21] 欧阳继红, 郭泽琪, 刘思光. 糖尿病视网膜病变分期双分支混合注意力决策网络[J]. 吉林大学学报(工学版), 2022, 52(3): 648-656. DOI: 10.13229/j.cnki.jdxbgxb20200813. [22] LI Y H, YAO T, PAN Y W, et al. Contextual transformer networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 45(2): 1489-1500. DOI: 10.1109/TPAMI.2022.3164083. [23] KIM Y, PARK W, ROH M C, et al. GroupFace: learning latent groups and constructing group-based representations for face recognition[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2020: 5620-5629. DOI: 10.1109/CVPR42600.2020.00566. [24] LI T, GAO Y Q, WANG K, et al. Diagnostic assessment of deep learning algorithms for diabetic retinopathy screening[J]. Information Sciences, 2019, 501: 511-522. DOI: 10.1016/j.ins.2019.06.011. [25] KHALIFA N E M, LOEY M, TAHA M H N, et al. Deep transfer learning models for medical diabetic retinopathy detection[J]. Acta Informatica Medica, 2019, 27(5): 327-332. DOI: 10.5455/aim.2019.27.327-332. [26] GU Y, LU X Q, YANG L D, et al. Automatic lung nodule detection using a 3D deep convolutional neural network combined with a multi-scale prediction strategy in chest CTs[J]. Computers in Biology and Medicine, 2018, 103: 220-231. DOI: 10.1016/j.compbiomed.2018.10.011. [27] 万黎明, 张小乾, 刘知贵, 等. 基于高效通道注意力的UNet肺结节CT图像分割[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 66-75. DOI: 10.16088/j.issn.1001-6600.2021071202. [28] GRAHAM B. Kaggle diabetic retinopathy detection competition report[R/OL]. (2015-08-06)[2023-05-18]. https://storage.googleapis.com/kaggle-forum-message-attachments/88655/2795/competitionreport.pdf. [29] 纪泽宇, 张兴军, 付哲, 等. 分布式深度学习框架下基于性能感知的DBS-SGD算法[J]. 计算机研究与发展, 2019, 56(11): 2396-2409. DOI: 10.7544/issn1000-1239.2019.20180880. [30] HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2017: 2261-2269. DOI: 10.1109/CVPR.2017.243. [31] DING X H, ZHANG X Y, MA N N, et al. RepVGG: making VGG-style ConvNets great again[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2021: 13728-13737. DOI: 10.1109/CVPR46437.2021.01352. [32] 王明智, 马志强, 赵锋锋, 等. 基于代价敏感正则化和EfficientNet的糖尿病视网膜病变分类方法[J]. 液晶与显示, 2022, 37(12): 1626-1635. DOI: 10.37188/CJLCD.2022-0161. [33] 宋若仙, 曹鹏, 赵大哲. 结合域适应学习的糖尿病视网膜病变分级诊断[J]. 中国图象图形学报, 2022, 27(11): 3356-3370. DOI: 10.11834/jig.210411. [34] 程小辉, 李贺军, 邓昀, 等. 基于ME-ANet模型的糖尿病视网膜病变分级[J]. 广西科学, 2022, 29(2): 249-259. DOI: 10.13656/j.cnki.gxkx.20220526.004. [35] 李家昱, 陈明惠, 杨瑞君, 等. 糖尿病视网膜病变眼底图像筛查研究[J]. 中国激光, 2022, 49(11): 1107001. DOI: 10.3788/CJL202249.1107001. [36] 梁礼明, 彭仁杰, 冯骏, 等. 基于跨层双线性池化的糖尿病视网膜病变分级算法研究[J]. 生物医学工程学杂志, 2022, 39(5): 928-936. DOI: 10.7507/1001-5515.202104038. [37] 牛学德, 高丙朋, 任荣荣, 等. 基于轻量级CNN的作物病虫害识别及安卓端应用[J]. 广西师范大学学报(自然科学版), 2022, 40(6): 59-68. DOI: 10.16088/j.issn.1001-6600.2022021601. [38] 魏明军, 周太宇, 纪占林, 等. 基于YOLOv3的公共场所口罩佩戴检测方法[J]. 广西师范大学学报(自然科学版), 2023, 41(1): 76-86. DOI: 10.16088/j.issn.1001-6600.2022030402. |
[1] | 王天雨, 袁嘉伟, 齐芮, 李洋. 多类型知识增强的微博立场检测模型[J]. 广西师范大学学报(自然科学版), 2024, 42(1): 79-90. |
[2] | 席凌飞, 伊力哈木·亚尔买买提, 刘雅洁. 基于改进YOLOv5的铝型材表面缺陷检测方法[J]. 广西师范大学学报(自然科学版), 2024, 42(1): 111-119. |
[3] | 高飞, 郭晓斌, 袁冬芳, 曹富军. 改进PINNs方法求解边界层对流占优扩散方程[J]. 广西师范大学学报(自然科学版), 2023, 41(6): 33-50. |
[4] | 宋冠武, 陈知明, 李建军. 基于ResNet-50的级联注意力遥感图像分类[J]. 广西师范大学学报(自然科学版), 2023, 41(6): 80-91. |
[5] | 郭嘉梁, 靳婷. 基于语义增强的多模态情感分析[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 14-25. |
[6] | 吴正清, 曹晖, 刘宝锴. 基于注意力卷积神经网络的中文虚假评论检测[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 26-36. |
[7] | 蒋懿波, 刘会家, 吴田. 基于改进残差网络的输电线路雷击过电压识别研究[J]. 广西师范大学学报(自然科学版), 2023, 41(4): 74-83. |
[8] | 唐侯清, 辛斌斌, 朱虹谕, 乙加伟, 张冬冬, 武新章, 双丰. 基于多尺度注意力倒残差网络的轴承故障诊断[J]. 广西师范大学学报(自然科学版), 2023, 41(4): 109-122. |
[9] | 黄叶祺, 王明伟, 闫瑞, 雷涛. 基于改进的YOLOv5金刚石线表面质量检测[J]. 广西师范大学学报(自然科学版), 2023, 41(4): 123-134. |
[10] | 邓希桢, 蒋明, 岑明灿, 罗玉玲. 基于熵图像静态分析技术的勒索软件分类研究[J]. 广西师范大学学报(自然科学版), 2023, 41(3): 91-104. |
[11] | 杨烁祯, 张珑, 王建华, 张恒远. 声音事件检测综述[J]. 广西师范大学学报(自然科学版), 2023, 41(2): 1-18. |
[12] | 王鲁娜, 杜洪波, 朱立军. 基于流形正则的堆叠胶囊自编码器优化算法[J]. 广西师范大学学报(自然科学版), 2023, 41(2): 76-85. |
[13] | 王利娥, 王艺汇, 李先贤. POI推荐中的多源数据融合和隐私保护方法[J]. 广西师范大学学报(自然科学版), 2023, 41(1): 87-101. |
[14] | 王宇航, 张灿龙, 李志欣, 王智文. 体现用户意图和风格的图像描述生成[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 91-103. |
[15] | 李正光, 陈恒, 林鸿飞. 基于双向语言模型的社交媒体药物不良反应识别[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 40-48. |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |