广西师范大学学报(自然科学版) ›› 2023, Vol. 41 ›› Issue (5): 86-95.doi: 10.16088/j.issn.1001-6600.2022111401

• 研究论文 • 上一篇    下一篇

MOF-2的水相合成及其热稳定和介电性能研究

程蕾1,2*, 闫普选3, 杜博豪3, 叶思3, 邹华红1,2   

  1. 1.广西师范大学 化学与药学学院,广西 桂林 541004;
    2.广西低碳能源材料重点实验室(广西师范大学),广西 桂林 541004;
    3.桂林电子科技大学 材料科学与工程学院,广西 桂林 541004
  • 收稿日期:2022-11-14 修回日期:2022-12-27 发布日期:2023-10-09
  • 通讯作者: 程蕾(1982—),女,河南安阳人,广西师范大学副研究员,博士。 E-mail: chenglei@gxnu.edu.cn
  • 基金资助:
    广西自然科学基金(2020GXNSFBA297001);广东省基础与应用基础研究基金-粤桂联合基金(2021A1515410006)

Thermal Stability and Dielectric Relaxation of MOF-2 Synthesized in Aqueous Phase

CHENG Lei1,2*, YAN Puxuan3, DU Bohao3, YE Si3, ZOU Huahong1,2   

  1. 1. School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin Guangxi 541004, China;
    2. Guangxi Key Laboratory of Low Carbon Energy Materials (Guangxi Normal University), Guilin Guangxi 541004, China;
    3. School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin Guangxi 541004, China
  • Received:2022-11-14 Revised:2022-12-27 Published:2023-10-09

摘要: 金属有机框架材料(metal-organic frameworks, MOFs)作为超低介电层间介质(ILD)材料,在满足高端芯片等微电子器件的大规模集成化发展方面显现出巨大的应用潜力。本文在常温常压水相中制备结晶性良好的MOF-2晶体,采用 Rietveld 精修分析MOF-2晶体的晶胞参数;研究MOF-2晶体在受热脱水过程中结构的变化,发现分子结构发生重排生成[Zn(BDC)(DMF)]和[Zn(BDC)(H2O)] 2种结构,100 ℃加热 6 h后,这2种产物的物相占比分别为89%和11%;采用介电频谱研究其介电性能,发现水相制备的MOF-2介电常数随频率变化较大,高频时相对介电常数稳定在4~5(>1 MHz),中频、低频时表现出较大的介电响应,这主要是由水分子和DMF的协同作用产生,受热脱去部分溶剂分子后产物的相对介电常数不再随频率发生变化并保持在约3.39(0.1~1 MHz);MOF-2脱去所有溶剂分子后生成片状结构的[Zn(BDC)],相对介电常数为3.91(0.1~1 MHz)。基于介电弛豫理论分析,MOF-2的介电响应主要由低频的直流电导、中频时水分子和DMF的协同极化作用、高频时的电子/离子位移极化以及普适介电响应(UDR)等4方面的弛豫机制贡献。本研究阐明了水相合成MOF-2及其受热脱溶剂产物的结构特征、介电性能和极化弛豫机制,为MOF-2在电学领域的应用提供了理论依据。

关键词: MOF-2, 晶体结构, 介电性能, 热稳定性, 极化弛豫

Abstract: As ultra-low dielectric layer dielectric (ILD) materials, metal-organic frameworks (MOFs) show great application potential in the development of large-scale integrated circuit for high-end chips and other microelectronic devices. In this paper, MOF-2 with good crystallinity was prepared in the aqueous phase at room temperature and pressure, and the lattice parameters were analyzed by Rietveld refinement. Because of molecular structure rearrangement, the crystal structure of MOF-2 was changed into two desolvent products with [Zn(BDC)(DMF)] and [Zn(BDC)(H2O)] during thermal dehydration. After heating at 100 ℃ for 6 h, the phases of these two products were 89% and 11% respectively. The dielectric properties of the products were studied by using dielectric spectrum. It was found that the dielectric constant of MOF-2 prepared in aqueous phase changed greatly with frequency, and the relative dielectric constant was 4-5 above 1 MHz. The synergistic effect of water and DMF molecule had a major impact on the dielectric response of MOF-2 at mid and low frequency. The relative dielectric constant of the product no longer changes with the frequency after heating and remains at about 3.39 (0.1-1 MHz). After removing all solvent molecules, MOF-2 generates [Zn(BDC)] with sheet structure, and the relative dielectric constant is 3.91 (0.1-1 MHz). Based on the dielectric relaxation theory, the dielectric response of MOF-2 could be described by four relaxation mechanisms: dc conductivity in low frequency, synergistic polarization of water molecules and DMF in intermediate frequency, electron/ion displacement polarization in high frequency, and the universal dielectric response (UDR). This study clarified the structural characteristics, dielectric properties and polarization relaxation mechanism of MOF-2 synthesized in aqueous phase and its desolvent products, the result provided a theoretical basis for the application of MOF-2 in the electrical field.

Key words: MOF-2, crystal structure, dielectric property, thermal stability, polarized relaxation

中图分类号:  O641; O76

[1] MENG J S, LIU X J, NIU C J, et al. Advances in metal-organic framework coatings: versatile synthesis and broad applications[J]. Chemical Society Reviews, 2020, 49(10): 3142-3186. DOI: 10.1039/c9cs00806c.
[2] WU H B, LOU X W. Metal-organic frameworks and their derived materials for electrochemical energy storage and conversion: promises and challenges[J]. Science Advances, 2017, 3(12): 9252. DOI: 10.1126/sciadv.aap9252.
[3] SUN L, CAMPBELL M G, DINCĂ M. Electrically conductive porous metal-organic frameworks[J]. Angewandte Chemie International Edition, 2016, 55(11): 3566-3579. DOI: 10.1002/anie.201506219.
[4] MENDIRATTA S, USMAN M, LU K L. Expanding the dimensions of metal-organic framework research towards dielectrics[J]. Coordination Chemistry Reviews, 2018, 360: 77-91. DOI: 10.1016/j.ccr.2018.01.005.
[5] WRIGHT F D, CONTE T M. Standards: roadmapping computer technology trends enlightens industry[J]. Computer, 2018, 51(6): 100-103. DOI: 10.1109/MC.2018.2701628.
[6] RYDER M R, ZENG Z X, TITOV K, et al. Dielectric properties of zeolitic imidazolate frameworks in the broad-band infrared regime[J]. The Journal of Physical Chemistry Letters, 2018, 9(10): 2678-2684. DOI:10.1021/acs.jpclett.8b00799.
[7] WARMBIER R, QUANDT A, SEIFERT G. Dielectric properties of selected metal-organic frameworks[J]. The Journal of Physical Chemistry C, 2014, 118(22):11799-11805. DOI: 10.1021/jp5029646.
[8] RYDER M R, DONÀ L, VITILLO J G, et al. Understanding and controlling the dielectric response of metal-organic frameworks[J]. ChemPlusChem, 2018, 83(4): 308-316. DOI: 10.1002/cplu.201700558.
[9] 姜恺悦, 杨重庆, 庄小东. 导电二维配位聚合物框架材料在能源存储及转化领域的应用[J]. 功能高分子学报, 2019, 32(2): 155-177. DOI: 10.14133/j.cnki.1008-9357.20180701001.
[10] CLAUSEN H F, POULSEN R D, BOND A D, et al. Solvothermal synthesis of new metal organic framework structures in the zinc-terephthalic acid-dimethyl formamide system[J]. Journal of Solid State Chemistry, 2005, 178(11): 3342-3351. DOI: 10.1016/j.jssc.2005.08.013.
[11] LI H L, EDDAOUDI M, GROY T L, et al. Establishing microporosity in open metal-organic frameworks: gas sorption isotherms for Zn(BDC)(BDC=1,4-benzenedicarboxylate)[J]. Journal of the American Chemical Society, 1998, 120(33): 8571-8572. DOI: 10.1021/ja981669x.
[12] GETACHEW N, CHEBUDE Y, DIAZ I, et al. Room temperature synthesis of metal organic framework MOF-2[J]. Journal of Porous Materials, 2014, 21(5): 769-773. DOI: 10.1007/s10934-014-9823-6.
[13] LI P Z, MAEDA Y, XU Q. Top-down fabrication of crystalline metal-organic framework nanosheets[J]. Chemical communications, 2011, 47(29): 8436-8438. DOI: 10.1039/c1cc12510a.
[14] SCHWEIGHAUSER L, HARANO K, NAKAMURA E. Experimental study on interconversion between cubic MOF-5 and square MOF-2 arrays[J]. Inorganic Chemistry Communications, 2017, 84: 1-4. DOI: 10.1016/j.inoche.2017.07.009.
[15] EDGAR M, MITCHELL R, SLAWIN A M Z, et al. Solid-state transformations of zinc 1,4-benzenedicarboxylates mediated by hydrogen-bond-forming molecules[J]. Chemistry, 2001, 7(23): 5168-5175. DOI: 10.1002/1521-3765(20011203).
[16] HAWXWELL S M, ADAMS H, BRAMMER L. Two-dimensional metal-organic frameworks containing linear dicarboxylates[J]. Acta Crystallographica Section B: Structural Science, 2006, 62(5): 808-814. DOI: 10.1107/S0108768106033283.
[17] ZHANG Z H, LIU B, XU L, et al. Combination effect of ionic liquid components on the structure and properties in 1,4-benzenedicarboxylate based zinc metal-organic frameworks[J]. Dalton Transactions, 2015, 44(41): 17980-17989. DOI: 10.1039/c5dt02672e.
[18] BISWAL D, KUSALIK P G. Probing molecular mechanisms of self-assembly in metal-organic frameworks[J]. ACS Nano, 2017, 11(1): 258-268. DOI: 10.1021/acsnano.6b05444.
[19] 李翰如. 电介质物理导论[M]. 成都:成都科技大学出版社,1990:127-130.
[20] 赵双孔. 介电谱方法及应用[M]. 北京:化学工业出版社,2008:89-99.
[21] COLE K S, COLE R H. Dispersion and absorption in dielectrics I. Alternating current characteristics[J]. The Journal of Chemical Physics, 1941, 9(4): 341-351. DOI: 10.1063/1.1750906.
[22] JONSCHER A K. Dielectric relaxation in solids[J]. Journal of Physics D: Applied Physics, 1999, 32(14): 57-70. DOI: 10.1088/0022-3727/32/14/201.
[1] 谢婷婷, 谢瑶, 倪青玲. 含有机膦金炔三氮唑配合物的合成表征及晶体结构[J]. 广西师范大学学报(自然科学版), 2020, 38(4): 92-99.
[2] 黄学仁, 赵志愿, 蒋毅民. 4′-(4-苯甲酸)-2,2′:6′,2″-三联吡啶锌配位聚合物的合成、晶体结构及荧光性质研究[J]. 广西师范大学学报(自然科学版), 2016, 34(2): 98-104.
[3] 王亚娜, 林家皇, 倪青玲, 张芳, 余荣华, 王修建. 2-[1,3-二(2-羟基苯甲基)-5-吡啶基-4-咪唑烷基]苯酚的合成及晶体结构[J]. 广西师范大学学报(自然科学版), 2016, 34(2): 105-110.
[4] 刘汉甫, 马献力, 陈素一, 沈雪松, 黄富平. 锌三元配合物的合成及其抑菌活性研究[J]. 广西师范大学学报(自然科学版), 2015, 33(4): 103-107.
[5] 梁晓龙, 黄婉云, 潘成学, 苏桂发. 5-乙酰胺基-4-(4-氯苯基)-2-甲基-6-氧代-5, 6-二氢-4H-吡喃-3-羧酸乙酯的合成及晶体结构[J]. 广西师范大学学报(自然科学版), 2015, 33(2): 82-87.
[6] 蒋丽萍, 黄婉云, 刘冬成, 梁福沛. 水杨醛联二萘酚二甲酰腙Zn(Ⅱ)、Cu(Ⅱ)配合物的合成及晶体结构[J]. 广西师范大学学报(自然科学版), 2015, 33(1): 93-98.
[7] 霍红月, 李仲庆, 覃其品, 刘延成, 陈振锋. 邻香草醛缩胡椒乙胺席夫碱锌(Ⅱ)配合物的研究[J]. 广西师范大学学报(自然科学版), 2014, 32(3): 65-73.
[8] 吴睿, 张楠曦, 张潇. 拟卤素化合物Cu[N(CH2OH)2CH2O](SCN)的合成、晶体结构和磁性[J]. 广西师范大学学报(自然科学版), 2013, 31(4): 78-83.
[9] 曾建强, 梁光明, 黄瑛达, 杨坤国, 桂柳成, 倪青玲. 氢键导向的三维超分子结构{[Co(4,4'-bipy)(H2O)4](pda)2(H2O)2}n的合成及晶体结构(pda-=2-甲基苯并咪唑-1,3-二乙酸根)[J]. 广西师范大学学报(自然科学版), 2013, 31(2): 69-75.
[10] 陈思园, 杨扬, 彭艳, 刘延成. 一种新型希夫碱钯配合物的晶体结构及抗肿瘤活性研究[J]. 广西师范大学学报(自然科学版), 2013, 31(2): 81-86.
[11] 张中, 胡坤, 林信良, 孙迎迎. 2-[2-(1H-1,2,4-三氮唑-1-基)乙基]-1H-苯并咪唑水合物的合成、晶体结构及光谱研究[J]. 广西师范大学学报(自然科学版), 2013, 31(1): 57-61.
[12] 李海叶, 蒋毅民, 蒙秀金. 邻菲咯啉-磺基丙氨酸钴(Ⅱ)配合物的合成与晶体结构[J]. 广西师范大学学报(自然科学版), 2013, 31(1): 72-75.
[13] 王修建, 丛新宇, 蒋选丰, 马凯, 张子豪, 曾建强, 倪青玲. 由Au…Au键诱导的Au-有机膦一维配位聚合物的合成、结构及表征[J]. 广西师范大学学报(自然科学版), 2012, 30(3): 189-193.
[14] 张刘生, 潘成学, 李丽, 苏桂发, 黄婉云, 覃江克, 唐煌. 含环丙烷氨基酸残基的构象限制二肽的合成及其晶体结构研究[J]. 广西师范大学学报(自然科学版), 2011, 29(3): 37-42.
[15] 黄婉云, 苏桂发, 潘成学, 覃江克, 唐煌, 义祥辉. 构象限制二肽的合成及其晶体结构研究[J]. 广西师范大学学报(自然科学版), 2011, 29(2): 56-60.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 董淑龙, 马姜明, 辛文杰. 景观视觉评价研究进展与趋势——基于CiteSpace的知识图谱分析[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 1 -13 .
[2] 郭嘉梁, 靳婷. 基于语义增强的多模态情感分析[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 14 -25 .
[3] 吴正清, 曹晖, 刘宝锴. 基于注意力卷积神经网络的中文虚假评论检测[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 26 -36 .
[4] 梁正友, 蔡俊民, 孙宇, 陈磊. 结合残差动态图卷积与特征强化的点云分类[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 37 -48 .
[5] 欧阳舒歆, 王洺钧, 荣垂田, 孙华波. 基于改进LSTM的多维QAR数据异常检测[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 49 -60 .
[6] 李依洋, 曾才斌, 黄在堂. 分数Brown运动驱动的具有壁附着的恒化器模型的随机吸引子[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 61 -68 .
[7] 李鹏博, 李永祥. 外部区域上p-Laplace方程的径向对称解[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 69 -75 .
[8] 吴子弦, 成军, 符坚铃, 周心雯, 谢佳龙, 宁全. 基于PI的Semi-Markovian电力系统事件触发控制设计分析[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 76 -85 .
[9] 刘美余, 张进燕, 周童曦, 廖广凤, 杨新洲, 卢汝梅. 匙羹藤中一个新的C21甾体糖苷及其降血糖活性[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 96 -104 .
[10] 王威, 邓华, 胡乐宁, 李杨. 赤泥-海藻酸钠水凝胶对水中Pb(Ⅱ)的吸附性能[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 105 -115 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发