|
广西师范大学学报(自然科学版) ›› 2023, Vol. 41 ›› Issue (3): 31-40.doi: 10.16088/j.issn.1001-6600.2022061006
凌湛钧1, 李宏韬1,2,3,4*, 陆杭林4, 付顾睿1, 黄天启1,2,3, 吕亮1,2,3, 俞本立1,2,3
LING Zhanjun1, LI Hongtao1,2,3,4*, LU Hanglin4, FU Gurui1, HUANG Tianqi1,2,3, LÜ Liang1,2,3, YU Benli1,2,3
摘要: 目前一些超细直径的微纳光纤耦合器虽具有极高的灵敏度,然而极细的直径亦使得这些光纤耦合器非常脆弱,使得在传感应用中可能会产生一些问题:很难将这种耦合器从实验制造平台转移到微流控生物传感器中;易受环境影响而不够稳定。为了解决上述问题,分别从实验和理论上研究一种直径为6.25 μm的微纳光纤耦合器,这种光学耦合器在外部折射率(refractive index, RI)为1.339 8时能达到-1 753 nm/RIU的高折射率灵敏度。基于有限元分析方法(finite element method, FEM),计算出偶/奇模的有效折射率和折射率灵敏度并与实验测试结果比对。本文制作的光纤耦合器可以很好地运用在光纤微流控生物传感等其他实验室芯片上的多功能传感中,有良好的实用前景。
中图分类号: TN253
[1] MODI A, KORATKAR N, LASS E, et al. Miniaturized gas ionization sensors using carbon nanotubes[J]. ChemInform, 2003, 34(40): 389-406. DOI: 10.1002/chin.200340238. [2] KIM J, CAMPBELL A S, DE ÁVILA B E F, et al. Wearable biosensors for healthcare monitoring[J]. Nature Biotechnology, 2019, 37(4): 389-406. DOI: 10.1038/s41587-019-0045-y. [3] XU H, XIA A Y, WANG D D, et al. An ultraportable and versatile point-of-care DNA testing platform[J]. Science Advances, 2020, 6(17): eaaz7445. DOI: 10.1126/sciadv.aaz7445. [4] 张晓,胡放荣,张隆辉,等.基于三谐振吸收峰的超材料太赫兹传感器[J].桂林电子科技大学学报,2023,43(2):157-164. DOI: 10.16725/j.cnki.cn45-1351/tn.2023.02.001. [5] 祁雁英,钟志贤,蔡忠侯,等.基于差分误差补偿的磁轴承转子位移测量方法[J].桂林理工大学学报,2022,42(2):491-495. [6] QIAN Y, ZHAO Y, WU Q L, et al. Review of salinity measurement technology based on optical fiber sensor[J]. Sensors and Actuators B: Chemical, 2018, 260: 86-105. DOI: 10.1016/j.snb.2017.12.077. [7] JANIK M, HAMIDI S V, KOBA M, et al. Real-time isothermal DNA amplification monitoring in picoliter volumes using an optical fiber sensor[J]. Lab on a Chip, 2021, 21(2): 397-404. DOI: 10.1039/d0lc01069c. [8] ZHAO Y, HU X G, HU S, et al. Applications of fiber-optic biochemical sensor in microfluidic chips: a review[J]. Biosensors and Bioelectronics, 2020, 166: 112447. DOI: 10.1016/j.bios.2020.112447. [9] LI H T, HUANG Y Y, CHEN C Y, et al. Real-time cellular cytochrome C monitoring through an optical microfiber: enabled by a silver-decorated graphene nanointerface[J]. Advanced Science, 2018, 5(8): 1701074. DOI: 10.1002/advs.201701074. [10] XU Y C, XIONG M, YAN H. A portable optical fiber biosensor for the detection of zearalenone based on the localized surface plasmon resonance[J]. Sensors and Actuators B: Chemical, 2021, 336: 129752. DOI: 10.1016/j.snb.2021.129752. [11] LIANG L L, JIN L, RAN Y, et al. Fiber light-coupled optofluidic waveguide (FLOW) immunosensor for highly sensitive detection of p53 protein[J]. Analytical Chemistry, 2018, 90(18): 10851-10857. DOI: 10.1021/acs.analchem.8b02123. [12] 赵明富,矫雷子,董大明,等.线性锥形光纤倏逝波传感器的灵敏度分析[J].压电与声光,2012,34(1):23-26. DOI: 10.3969/j.issn.1004-2474.2012.01.008. [13] JUSTE-DOLZ A, DELGADO-PINAR M, AVELLA-OLIVER M, et al. BIO bragg gratings on microfibers for label-free biosensing[J]. Biosensors and Bioelectronics, 2021, 176: 112916. DOI: 10.1016/j.bios.2020.112916. [14] LI Y P, FANG F, YANG L Y, et al. In-situ DNA hybridization detection based on a reflective microfiber probe[J]. Optics Express, 2020, 28(2): 970-979. DOI: 10.1364/OE.380896. [15] WU J X, ZHANG X, LIU B, et al. Square-microfiber-integrated biosensor for label-free DNA hybridization detection[J]. Sensors and Actuators B: Chemical, 2017, 252: 1125-1131. DOI: 10.1016/j.snb.2017.07.168. [16] SUN L P, HUANG Y, HUANG T S, et al. Optical microfiber reader for Enzyme-linked immunosorbent assay[J]. Analytical Chemistry, 2019, 91(21): 14141-14148. DOI: 10.1021/acs.analchem.9b04119. [17] JIA H, ZHANG A, YANG Y Q, et al. A graphene oxide coated tapered microfiber acting as a super-sensor for rapid detection of SARS-CoV-2[J]. Lab on a Chip, 2021, 21(12): 2398-2406. DOI: 10.1039/d0lc01231a. [18] LI H T, HUANG Y Y, HOU G H, et al. Single-molecule detection of biomarker and localized cellular photothermal therapy using an optical microfiber with nanointerface[J]. Science Advances, 2019, 5(12): eaax4659. DOI: 10.1126/sciadv.aax4659. [19] LU H L, LIU R J, LIU P Y, et al. Au-NPs signal amplification ultra-sensitivity optical microfiber interferometric biosensor[J]. Optics Express, 2021, 29(9): 13937-13948. DOI: 10.1364/OE.424878. [20] XIAO A X, HUANG Y Y, ZHENG J Y, et al. An optical microfiber biosensor for CEACAM5 detection in serum: sensitization by a nanosphere interface[J]. ACS Applied Materials & Interfaces, 2020, 12(1): 1799-1805. DOI: 10.1021/acsami.9b16702. [21] SUN D D, XU S M, LIU S, et al. Simultaneous measurement of temperature and relative humidity based on a twisted microfiber coated with nanomaterials[J]. Applied Optics, 2021, 60(13): 3849-3855. DOI: 10.1364/AO.423341. [22] LI K W, ZHANG N, ZHANG N M Y, et al. Ultrasensitive measurement of gas refractive index using an optical nanofiber coupler[J]. Optics Letters, 2018, 43(4): 679-682. DOI: 10.1364/OL.43.000679. [23] LI K W, ZHANG N M Y, ZHANG N, et al. Spectral characteristics and ultrahigh sensitivities near the dispersion turning point of optical microfiber couplers[J]. Journal of Lightwave Technology, 2018, 36(12): 2409-2415. DOI: 10.1109/JLT.2018.2815558. [24] ZHOU W C, LI K W, WEI Y L, et al. Ultrasensitive label-free optical microfiber coupler biosensor for detection of cardiac troponin I based on interference turning point effect[J]. Biosensors & Bioelectronics, 2018, 106: 99-104. DOI: 10.1016/j.bios.2018.01.061. [25] WEI F F, LIU D J, WANG Z, et al. Enhancing the visibility of Vernier effect in a tri-microfiber coupler fiber loop interferometer for ultrasensitive refractive index and temperature sensing[J]. Journal of Lightwave Technology, 2021, 39(5): 1523-1529. DOI: 10.1109/JLT.2020.3035655. [26] JIANG Y X, YI Y T, BRAMBILLA G, et al. High-sensitivity, fast-response ethanol gas optical sensor based on a dual microfiber coupler structure with the Vernier effect[J]. Optics Letters, 2021, 46(7): 1558-1561. DOI: 10.1364/OL.418953. [27] LI K W, ZHANG N, ZHANG N M Y, et al. Birefringence induced Vernier effect in optical fiber modal interferometers for enhanced sensing[J]. Sensors and Actuators B: Chemical, 2018, 275: 16-24. DOI: 10.1016/j.snb.2018.08.027. [28] JIANG Y X, YI Y T, BRAMBILLA G, et al. Ultra-high-sensitivity refractive index sensor based on dual-microfiber coupler structure with the Vernier effect[J]. Optics Letters, 2020, 45(5): 1268-1271. DOI: 10.1364/OL.385345. [29] 周玮.基于级联长周期光栅的高灵敏度传感器的设计与应用研究[D].武汉:华中科技大学,2020. DOI: 10.27157/d.cnki.ghzku.2020.005522 [30] 张俊傲,李国民,周远国,等.基于黑磷的多共振折射率传感器研究[J].空军工程大学学报(自然科学版),2022,23(1):43-48.DOI: 10.3969/j.issn.1009-3516.2022.01.006. [31] 付兴虎,黄书铭,李东姝,等.基于粗锥结构级联LPFG的双包层光纤多参量传感器[J].光子学报,2021,50(1):75-85. DOI: 10.3788/gzxb20215001.0106001. [32] 伍铁生,杨祖宁,张慧仙,等.D型高双折射光子晶体光纤的折射率传感特性研究[J].光子学报,2022,51(3):0306003. DOI: 10.3788/gzxb20225103.0306003. [33] 陈海林,江超,郭小珊,等.同时测量温度与折射率的细芯锥形光纤传感器[J].电子器件,2022,45(1):112-116. DOI: 10.3969/j.issn.1005-9490.2022.01.019. [34] 杨帆,曹晔,李美琪,等.基于S锥结构光纤传感器的研究[J].青岛大学学报(工程技术版),2022,37(2):1-6. DOI: 10.13306/j.1006-9798.2022.02.001. [35] 朱永钦.基于螺旋锥的马赫-曾德尔干涉仪光纤传感器研究[D].长春:吉林大学,2020. DOI: 10.27162/d.cnki.gjlin.2020.005793. [36] YARIV A, YEH P. Photonics: optical electronics in modern communications[M]. New York: Oxford University Press, 2007. [37] YANG S W, WU T L, WU C W, et al. Numerical modeling of weakly fused fiber-optic polarization beamsplitters. Part II: the three-dimensional electromagnetic model[J]. Journal of Lightwave Technology, 1998, 16(4): 691-696. DOI: 10.1109/50.664084. [38] LI J, SUN L P, GAO S, et al. Ultrasensitive refractive-index sensors based on rectangular silica microfibers[J]. Optics Letters, 2011, 36(18): 3593-3595. DOI: 10.1364/OL.36.003593. [39] 郝晋青,韩丙辰.基于游标效应的高灵敏度光纤耦合器折射率传感器[J].光学学报,2020,40(2):0206002. DOI: 10.3788/AOS202040.0206002. [40] 蔡志远.光子晶体光纤局域表面等离子体共振传感器的研究[D].秦皇岛:燕山大学,2021. DOI: 10.27440/d.cnki.gysdu.2021.001398. [41] 韩磊.表面等离子体共振传感器增敏机理及优化设计研究[D].武汉:中国地质大学,2021. DOI: 10.27492/d.cnki.gzdzu.2021.000042. |
[1] | 陆杭林, 邵来鹏, 张帆, 唐剑, 黎远鹏, 王咏梅, 胡君辉. 光纤MZI传感器传感机理与传感应用研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(6): 1-17. |
[2] | 郑凯瑞, 杨发展, 赵国栋, 卞东超, 黄珂, 车成业. 血管支架内壁微织构参数对近壁面血流特性的影响[J]. 广西师范大学学报(自然科学版), 2022, 40(6): 185-195. |
[3] | 邵慧婷, 杨启贵. 具有4个正Lyapunov指数的六维超混沌系统的复杂动力学研究[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 433-444. |
[4] | 徐王军, 曹进德, 伍代勇, 申传胜. 一类具有迁移和Allee效应的食饵-捕食者系统稳定性[J]. 广西师范大学学报(自然科学版), 2022, 40(2): 103-115. |
[5] | 阮文静, 杨启贵. 具有有限和无限孤立奇点的新四维超混沌系统的复杂动力学分析[J]. 广西师范大学学报(自然科学版), 2021, 39(5): 173-181. |
[6] | 陈东, 胡葵. 覆盖Gorenstein AC-平坦维数[J]. 广西师范大学学报(自然科学版), 2020, 38(6): 51-55. |
[7] | 郑涛, 周欣然, 张龙. 三种群捕食-竞争-合作混杂模型的全局渐近稳定性[J]. 广西师范大学学报(自然科学版), 2020, 38(5): 64-70. |
[8] | 王俊杰, 温雪岩, 徐克生, 于鸣. 基于局部敏感哈希的改进堆叠算法[J]. 广西师范大学学报(自然科学版), 2020, 38(4): 21-31. |
[9] | 罗兰, 周楠, 司杰. 不确定细胞神经网络鲁棒稳定新的时滞划分法[J]. 广西师范大学学报(自然科学版), 2019, 37(4): 45-52. |
[10] | 洪玲玲,杨启贵. 新四维超混沌系统的复杂动力学研究[J]. 广西师范大学学报(自然科学版), 2019, 37(3): 96-105. |
[11] | 吴娟,朱宏阳,梅平,陈武,李中宝. 聚甲基丙烯酸甲酯改性纳米SiO2及其Pickering乳液稳定性[J]. 广西师范大学学报(自然科学版), 2019, 37(3): 120-131. |
[12] | 陈思谕, 邹艳丽, 周建, 谭华珍. 电网发电机功率分配及电网负载不均衡发展研究[J]. 广西师范大学学报(自然科学版), 2019, 37(2): 52-59. |
[13] | 韩会庆, 蔡广鹏, 尹昌应, 马庚, 张英佳, 陆艺. 2000年和2015年乌江中上游景观稳定性变化研究[J]. 广西师范大学学报(自然科学版), 2019, 37(1): 197-204. |
[14] | 苗新艳, 张龙, 罗颜涛, 潘丽君. 一类交替变化的竞争—合作混杂种群模型研究[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 25-31. |
[15] | 黄开娇, 肖飞雁. 具有Beddington-DeAngelis型功能性反应的随机捕食—被捕食系统[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 32-40. |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |