|
广西师范大学学报(自然科学版) ›› 2023, Vol. 41 ›› Issue (1): 87-101.doi: 10.16088/j.issn.1001-6600.2022021104
王利娥1,2, 王艺汇1, 李先贤1,2*
WANG Li’e1,2, WANG Yihui1, LI Xianxian1,2*
摘要: 随着移动定位技术的发展,兴趣点(point-of-interest,POI)推荐技术已经成为推荐领域中的研究热点之一。受限于用户的签到能力,POI推荐中存在严重的数据稀疏问题,而融合多源数据的POI推荐又面临着多重隐私挑战。涉及多来源的数据具有多样性、多元性等隐私特征,隐私泄漏机理更为复杂多样,其隐私保护问题更具挑战性。为此,本文提出一种基于注意力机制和隐私保护的多源POI推荐——MultiAM&PP_POI,能够在保护隐私的前提下有效提高POI推荐的精度。为了实现数据的有效融合,本文采用LDA主题模型提取用户在不同领域中的潜在特征,并利用注意力机制来自适应地训练,学习不同领域的潜在特征对POI推荐结果的影响,同时利用多层感知器来实现不同领域潜在特征的迁移。针对多源POI推荐中的隐私问题,本文利用联邦学习框架将原始数据保存在本地,各参与方只需交互加密后的潜在特征,并改进了注意力机制和多层感知器,使其可在密文状态下完成训练,以保护用户隐私的安全。最后通过实验验证,本文模型能够在保护用户隐私前提下,相比单源联邦模型和其他跨域模型,在推荐精度方面分别提升3.05和4.42个百分点。
中图分类号:
[1] ZHANG C Y,WANG K. POI recommendation through cross-region collaborative filtering[J]. Knowledge and Information Systems,2016,46(2):369-387,DOI:10.1007/s10115-015-0825-8. [2]LI X,JIANG M M,HONG H T,et al. A time-aware personalized point-of-interest recommendation via high-order tensor factorization[J]. ACM Transactions on Information Systems,2017,35(4):31. DOI:10.1145/3057283. [3]CHANG B,KOH Y,PARK D,et al. Content-aware successive point-of-interest recommendation[C]// Proceedings of the 2020 SIAM International Conference on Data Mining(SDM). Philadelphia,PA:Society for Industrial and Applied Mathematics,2020:100-108. DOI:10.1137/1.9781611976236.12. [4]XU Y N,XU L,HUANG L,et al. Social and content based collaborative filtering for point-of-interest recommendations[C]// Neural Information Processing:LNTCS Volume 10638. Cham:Springer International Publishing AG,2017:46-56. DOI:10.1007/978-3-319-70139-4_5. [5]XU Y Y,LI X F,LI J,et al. SSSER:Spatiotemporal sequential and social embedding bank for successive point-of-interest recommendation[J]. IEEE Access,2019,7:156804-156823. DOI:10.1109/ACCESS.2019.2950061. [6]夏英,张金凤. 融合社交关系和局部地理因素的兴趣点推荐[J]. 计算机工程与应用,2021,57(15):133-139. DOI:10.3778/j.issn.1002-8331.2007-0172. [7]王启正. 隐私保护下的数据处理[D]. 济南:山东师范大学,2019. [8]LI L C,LU R X,CHOO K K R,et al. Privacy-preserving-outsourced association rule mining on vertically partitioned databases[J]. IEEE Transactions on Information Forensics and Security,2016,11(8):1847-1861. DOI:10.1109/TIFS.2016.2561241. [9]PAN Z G,CUI L,WU X Y,et al. Deep potential geo-social relationship mining for point-of-interest recommendation[J]. IEEE Access,2019,7:99496-99507. DOI:10.1109/ACCESS.2019.2930311. [10]STEFANCOVA E,SRBA I. POI recommendation based on locality-specific seasonality and long-term trends[C]// SOFSEM 2020:Theory and Practice of Computer Science:LNCS Volume 12011. Cham:Springer Nature Switzerland AG,2020:338-349. DOI:10.1007/978-3-030-38919-2_28. [11]叶继华,杨思渝,左家莉,等. 基于时空上下文信息的POI推荐模型研究[J]. 电子与信息学报,2021,43(12):3546-3553. DOI:10.11999/JEIT200368. [12]陈炯,张虎,曹付元. 融合多因素的兴趣点协同推荐方法研究[J]. 计算机科学,2019,46(10):77-83. DOI:10.11896/jsjkx.180901757. [13]DA SILVA E D S,LANGSETH H,RAMAMPIARO H. Content-based social recommendation with poisson matrix factorization[C]// Machine Learning and Knowledge Discovery in Databases:LNCS Volume 10534. Cham:Springer International Publishing AG,2017:530-546. DOI:10.1007/978-3-319-71249-9_32. [14]CHANG B,PARK Y,PARK D,et al. Content-aware hierarchical point-of-interest embedding model for successive POI recommendation[C]// Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence. Stockholm:IJCAI,2018:3301-3307. DOI:10.24963/ijcai.2018/458. [15]陈劲松,孟祥武,纪威宇,等. 基于多维上下文感知图嵌入模型的兴趣点推荐[J]. 软件学报,2020,31(12):3700-3715. DOI:10.13328/j.cnki.jos.005855. [16]刘真,王娜娜,王晓东,等. 位置社交网络中谱嵌入增强的兴趣点推荐算法[J]. 通信学报,2020,41(3):197-206. DOI:10.11959/j.issn.1000-436x.2020053. [17]任星怡,宋美娜,宋俊德. 基于位置社交网络的上下文感知的兴趣点推荐[J]. 计算机学报,2017,40(4):824-841. DOI:10.11897/SP.J.1016.2017.00824. [18]ZHANG Z Y,LIU Y,ZHANG Z J,et al. Fused matrix factorization with multi-tag,social and geographical influences for POI recommendation[J].World Wide Web,2019,22(3):1135-1150. DOI:10.1007/s11280-018-0579-9. [19]ZENG J,LI F,HE X,et al. Fused collaborative filtering with user preference,geographical and social Influence for point of interest recommendation[J]. International Journal of Web Services Research,2019,16(4):40-52. DOI:10.4018/ijwsr. 2019100103. [20]LI D C,GONG Z G,ZHANG D F. A common topic transfer learning model for crossing city POI recommendations[J].IEEE Transactions on Cybernetics,2019,49(12):4282-4295,DOI:10.1109/TCYB.2018.2861897. [21]DING J T,YU G H,LI Y,et al.Learning from hometown and current city:cross-city POI recommendation via interest drift and transfer learning[J]. Proceedings of the ACM on Interactive,Mobile,Wearable and Ubiquitous Technologies,2019,3(4):131. DOI:10.1145/3369822. [22]YIN H Z,SUN Y Z,CUI B,et al. LCARS:a location-content-aware recommender system[C]// Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York,NY:Association for Computing Machinery,2013:221-229. DOI:10.1145/2487575.2487608. [23]WEN Y,ZHANG J S,ZENG Q T,et al. Loc2Vec-based cluster-level transition behavior mining for successive POI recommendation[J]. IEEE Access,2019,7:109311-109319. DOI:10.1109/ACCESS.2019.2931075. [24]郭旦怀,张鸣珂,贾楠,等. 融合深度学习技术的用户兴趣点推荐研究综述[J]. 武汉大学学报(信息科学版),2020,45(12):1890-1902. DOI:10.13203/j.whugis20200334. [25]LI X X,SUI P P,BAI Y,et al. M-generalization for multipurpose transcational data publication[J]. Frontiers of Computer Science,2018,12(6):1241-1254. DOI:10.1007/s11704-016-6061-x. [26]WADHWA S,AGRAWAL S,CHAUDHARI H,et al. Data poisoning attacks against differentially private recommender systems[C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York,NY:Association for Computing Machinery,2020:1617-1620. DOI:10.1145/3397271.3401301. [27]WANG W Q,LIU A,LI Z X,et al. Protecting multi-party privacy in location-aware social point-of-interest recommendation[J].World Wide Web, 2019,22(2):863-883. DOI:10.1007/s11280-018-0550-9. [28]张青云,张兴,李万杰,等. 基于差分隐私保护的兴趣点推荐算法设计[J]. 计算机应用与软件,2019,36(9):243-248,269. DOI:10.3969/j.issn.1000-386x.2019.09.043. [29]沈鑫娣,翟东君,张得天,等. 基于LSH的隐私保护POI推荐算法[J]. 计算机工程,2019,45(1):96-102. DOI:10.19678/j.issn.1000-3428.0049731. [30]CHEN C C,LIU Z Q,ZHAO P L,et al. Privacy preserving point-of-interest recommendation using decentralized matrix factorization[C]// Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence and Thirtieth Innovative Applications of Artificial Intelligence Conference and Eighth AAAI Symposium on Educational Advances in Artificial Intelligence. Palo Alto,CA:AAAI Press,2018:257-264. [31]彭佳. 隐私保护的兴趣点推荐系统研究[D]. 苏州:苏州大学,2019. DOI:10.27351/d.cnki.gszhu.2019.000828. [32]XING S N,LIU F A,WANG Q Q,et al. Content-aware point-of-interest recommendation based on convolutional neural network[J]. Applied Intelligence,2019,49(3):858-871. DOI:10.1007/s10489-018-1276-1. [33]WU S W,ZHANG Y X,GAO C L,et al. GARG:anonymous recommendation of point-of-interest in mobile networks by graph convolution network[J]. Data Science and Engineering,2020,5(4):433-447. DOI:10.1007/s41019-020-00135-z. [34]GAO H J,TANG J L,HU X,et al. Content-aware point of interest recommendation on location-based social networks[J]. Proceedings of the AAAI Conference on Artificial Intelligence,2015,29(1):1721-1727. DOI:10.1609/aaai.v29i1.9462. [35]WANG L E,WANG Y H,BAI Y,et al. POI recommendation with federated learning and privacy preserving in cross domain recommendation[C]// IEEE INFOCOM 2021-IEEE Conference on Computer Communications Workshops(INFOCOM WKSHPS). Piscataway,NJ:IEEE,2021:1-6. DOI:10.1109/INFOCOMWKSHPS51825.2021.9484510. |
[1] | 王宇航, 张灿龙, 李志欣, 王智文. 体现用户意图和风格的图像描述生成[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 91-103. |
[2] | 李正光, 陈恒, 林鸿飞. 基于双向语言模型的社交媒体药物不良反应识别[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 40-48. |
[3] | 万黎明, 张小乾, 刘知贵, 宋林, 周莹, 李理. 基于高效通道注意力的UNet肺结节CT图像分割[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 66-75. |
[4] | 张萍, 徐巧枝. 基于多感受野与分组混合注意力机制的肺结节分割研究[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 76-87. |
[5] | 孔亚钰, 卢玉洁, 孙中天, 肖敬先, 侯昊辰, 陈廷伟. 面向强化当前兴趣的图神经网络推荐算法研究[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 151-160. |
[6] | 吴军, 欧阳艾嘉, 张琳. 基于多头注意力机制的磷酸化位点预测模型[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 161-171. |
[7] | 邓文轩, 杨航, 靳婷. 基于注意力机制的图像分类降维方法[J]. 广西师范大学学报(自然科学版), 2021, 39(2): 32-40. |
[8] | 葛奕飞, 郑彦斌. 带有纠删或纠错性质的隐私保护信息检索方案[J]. 广西师范大学学报(自然科学版), 2020, 38(3): 33-44. |
[9] | 王涵, 王绪安, 周能, 柳玉东. 基于区块链的可审计数据分享方案[J]. 广西师范大学学报(自然科学版), 2020, 38(2): 1-7. |
[10] | 李维勇, 柳斌, 张伟, 陈云芳. 一种基于深度学习的中文生成式自动摘要方法[J]. 广西师范大学学报(自然科学版), 2020, 38(2): 51-63. |
[11] | 王健, 郑七凡, 李超, 石晶. 基于ENCODER_ATT机制的远程监督关系抽取[J]. 广西师范大学学报(自然科学版), 2019, 37(4): 53-60. |
[12] | 武文雅, 陈钰枫, 徐金安, 张玉洁. 基于高层语义注意力机制的中文实体关系抽取[J]. 广西师范大学学报(自然科学版), 2019, 37(1): 32-41. |
[13] | 岳天驰, 张绍武, 杨亮, 林鸿飞, 于凯. 基于两阶段注意力机制的立场检测方法[J]. 广西师范大学学报(自然科学版), 2019, 37(1): 42-49. |
[14] | 葛丽娜. 基于k-同构和局部随机化的隐私保护方法[J]. 广西师范大学学报(自然科学版), 2016, 34(4): 1-8. |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |