广西师范大学学报(自然科学版) ›› 2010, Vol. 28 ›› Issue (3): 46-50.

• • 上一篇    下一篇

低温烧结α/β Si3N4复相陶瓷及力学性能研究

梁振华1, 彭桂花1, 冯玉芝1, 李庆余1, 刘茜2, 李文兰2   

  1. 1.广西师范大学化学化工学院药用资源化学与药物分子工程教育部重点实验室,广西桂林541004;
    2.中国科学院上海硅酸盐研究所高性能陶瓷和超微结构国家重点实验室,上海200050
  • 收稿日期:2010-01-27 出版日期:2010-09-20 发布日期:2023-02-06
  • 通讯作者: 彭桂花(1979—),女,湖北钟祥人,广西师范大学教授,博士。E-mail:pengguihua@mail.sic.ac.cn
  • 基金资助:
    国家自然科学基金资助项目(50962003);广西科学研究与技术开发计划应用基础研究专项基金资助项目(桂科基0731007);高性能陶瓷和超微结构国家重点实验室开放基金资助项目(SKL200707SIC)

Fabrication of α/β Si3N4 Composites at Low Temperature and Its Mechanical Properties

LIANG Zhen-hua1, PENG Gui-hua1, FENG Yu-zhi1, LI Qing-yu1, LIU Qian2, LI Wen-lan2   

  1. 1. Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources of Ministry of Education of China,College of Chemistry and Chemical Engineering,Guangxi Normal University,Guilin Guangxi 541004,China;
    2. State Key Laboratory of High Performance Ceramics and Superfine Microstructure,Shanghai Institute of Ceramics, Chinese Academy of Sciences,Shanghai 200050,China
  • Received:2010-01-27 Online:2010-09-20 Published:2023-02-06

摘要: 以MgSiN2为烧结助剂,在1 600~1 750 °C下,热压烧结制备α/β Si3N4复相陶瓷,并研究其力学性能与相组成及显微结构之间的关系。结果表明,显微硬度随α-Si3N4质量分数的增加而增加,α-Si3N4质量分数为60%时,显微硬度达到最大,随α-Si3N4质量分数继续增加,显微硬度变化很小,约为23 GPa。随着β-Si3N4质量分数的增加,断裂韧性先增加后又下降,抗弯强度先增加而后变化不大。

关键词: Si3N4, 陶瓷, 低温烧结, 力学性能, MgSiN2

Abstract: α/β Si3N4 composites were sintered by hot pressing at 1 600~1 750 °C using MgSiN2 as additives,and the relationship between mechanical properties and phase composition,microstructure was investigated.Microhardness increased with the increase of the content of α-Si3N4,achieved the highest valuewhen the content of α-Si3N4 is about 60%,and tended to a steady value (about 23 GPa) with further increase of the content of α-Si3N4.With the increaseof the content of β-Si3N4,fracture toughness increased and then decreased,and strength increased first and then had little change.

Key words: Si3N4, ceramic, sinter at low temperature, mechanical properties, MgSiN2

中图分类号: 

  • TQ174
[1] THOMPSON D P.Tough cookery[J].Nature,1997,389(16):675-677.
[2] UCHIDA M,KOIZUMI M,SHIMADA M,et al.Fabrication of Si3N4 ceramics with metal nitride additives by isostatic hot-presssing[J].Journal of the AmericanCeramic Society,1985,68(2):C38-40.
[3] ABE O.Sintering of silicon nitride with alkaline-earth nitride[J].Ceramic International,1990,16(1):53-60.
[4] HUANG Zhen-kun,ROSENFLANZ A,CHEN Yi-wei.Pressureless sintering of Si3N4 ceramics using AlN and rare-earth oxides[J].Journal of the American Ceramic Society,1997,80(5):1256-1262.
[5] HAYASHI H,HIRAO K,TORIYAMA M,et al.MgSiN2 addition as a meansof increasing the thermal conductivity of β-silicon nitride[J].Journal of the American Ceramic Society,2001,84(12):3060-3062.
[6] PENG Gui-hua,JIANG Guo-jian,ZHUANG Han-rui,et al.A novel route for preparing MgSiN2 powder by combustion synthesis[J].Materials Science and Engineering:A,2005,397:65-68.
[7] NICOLICH J P,LENCES Z,DRESSLER W,et al.Phase quantification ofβ-Si3N4/β-SiC mixtures by X-ray powder diffraction analysis[J].Journal of Materials Science,2000,35(6):1427-1432.
[8] OGATA S,HIROSAKI N,KOCER C,et al.A comparative ab initio studyof the ‘Ideal’ strength of single crystal α and β-Si3N4[J].Acta Materialia,2004,52(1):233-238.
[9] BECHER P F.Microstructural design of toughened ceramics[J].Journal of the American Ceramic Society,1991,74(2):255-269.
[10] BECHER P F,PAINTER G S,SUN E Y,et al.The importance of amorphous intergranular films in self-reinforced ceramics[J].Acta Materialia,2000,48(18/19):4493-4499.
[1] 彭桂花, 王夏, 何岸梅, 梁振华, 韩小宝. 燃烧合成超细ITO粉体[J]. 广西师范大学学报(自然科学版), 2011, 29(4): 99-103.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发