|
广西师范大学学报(自然科学版) ›› 2022, Vol. 40 ›› Issue (6): 37-49.doi: 10.16088/j.issn.1001-6600.2021080602
韩成浩1, 苑玥珂1, 芦天亮1, 王剑峰1,2, 韩丽1,2*
HAN Chenghao1, YUAN Yueke1, LU Tianliang1, WANG Jianfeng1,2, HAN Li1,2*
摘要: 微波离子热合成是用离子液体或低共熔混合物做溶剂和模板剂,并辅之以微波加热的一种新型合成技术。它既保留了离子液体/低共熔混合物的低熔点和不易挥发等特点,又具有微波高效节能的特点,不仅为材料合成提供了新的发展视角,也符合碳中和发展目标。本文对微波离子热在材料合成方面的应用进行综述,包括分子筛的合成、纳米材料的合成及其他材料的合成,并对微波离子热合成的发展前景进行展望。
中图分类号:
[1] 吴烨, 金毅, 周宁怀.微波辐射下固相合成Cu(Gly)2·H2O的微型实验[J].广西师范大学学报(自然科学版), 2000, 18(S1): 74-76. DOI: 10.16088/j.issn.1001-6600.2000.s1.034. [2] XU Y P, TIAN Z J, WANG S J, et al. Microwave-enhanced ionothermal synthesis of aluminophosphate molecular sieves[J]. Angewandte Chemie International Edition, 2006, 45(24): 3965-3970. DOI: 10.1002/anie.200600054. [3] CAI R, LIU Y, GU S, et al.Ambient pressure dry-gel conversion method for zeolite MFI synthesis using ionic liquid and microwave heating[J]. Journal of the American Chemical Society, 2010, 132(37): 12776-12777. DOI: 10.1021/ja101649b. [4] NG E P, WONG K L, NG D T L, et al. AlPO-5 nanocrystals templated by 1-ethyl-2, 3-dimethylimidazolium hydroxide and their textural and water sorption properties[J]. Materials Chemistry and Physics, 2017, 188: 49-57. DOI: 10.1016/j.matchemphys.2016.12.031. [5] NG E P, NG D T L, AWALA H, et al. Microwave synthesis of colloidal stable AlPO-5 nanocrystals with high water adsorption capacity and unique morphology[J]. Materials Letters, 2014, 132: 126-129. DOI: 10.1016/j.matlet.2014.06.022. [6] 臧丽君, 邵国林, 李昆兰, 等. 微波离子热合成纳米方钠石粉体[J]. 大连工业大学学报, 2013, 32(3): 220-223. DOI: 10.19670/j.cnki.dlgydxxb.2013.03.018. [7] 邵国林, 魏立纲, 马英冲, 等. 离子热法合成方钠石膜及其在金属防腐方面的应用[J]. 化工学报, 2015, 66(S1): 292-296. DOI: 10.11949/j.issn.0438-1157.20150136. [8] JHUNG S H, CHANG J S, HWANG Y K, et al. Crystal morphology control of AFI type molecular sieves with microwave irradiation[J]. Journal of Materials Chemistry, 2004, 14(2): 280-285. DOI: 10.1039/b309142b. [9] VENNA S R, CARREON M A. Microwave assisted phase transformation of silicoaluminophosphate zeolite crystals[J]. Journal of Materials Chemistry, 2009, 19(20): 3138-3140. DOI: 10.1039/b903316e. [10] ZHAO X H, WEN J J, ZHAO J B, et al. Hierarchically structured SAPO-5 molecular sieve catalysts with tailored mesoporosity for alkylation reaction[J]. Journal of Porous Materials, 2015, 22(3): 577-584. DOI: 10.1007/s10934-015-9929-5. [11] 张峻维, 段维婷, 赵新红. 纳米薄层SAPO-5分子筛的离子热合成及催化性能[J]. 精细化工, 2020, 37(3): 547-554. DOI: 10.13550/j.jxhg.20190693. [12] ZHAO X H, ZHANG X X, HAO Z X, et al. Synthesis of FeAPO-5 molecular sieves with high iron contents via improved ionothermal method and their catalytic performances in phenol hydroxylation[J]. Journal of Porous Materials, 2018, 25(4): 1007-1016. DOI: 10.1007/s10934-017-0511-1. [13] ZHAO X H, DUAN W T, WANG Q P, et al. Microwave-assisted ionothermal synthesis of Fe-LEV molecular sieve with high iron content in low-dosage of eutectic mixture[J]. Microporous and Mesoporous Materials, 2019, 275: 253-262. DOI: 10.1016/j.micromeso.2018.09.005. [14] ZHAO X H, KANG C X, WANG H, et al. Ionothermal synthesis of FeAlPO-16 molecular sieve by microwave irradiation in eutectic mixture[J]. Journal of Porous Materials, 2011, 18(5): 615-621. DOI: 10.1007/s10934-010-9417-x. [15] ZHAO X H, WANG H, KANG C X, et al. Ionothermal synthesis of mesoporous SAPO-5 molecular sieves by microwave heating and using eutectic solvent as structure-directing agent[J]. Microporous & Mesoporous Materials, 2012, 151: 501-505. DOI: 10.1016/j.micromeso.2011.10.009. [16] 李恒杰, 高鹏飞, 薛晓璐, 等. 低共熔体中微波离子热法合成TAPO-5分子筛[J]. 分子催化, 2018, 32(3): 218-227. DOI: 10.16084/j.cnki.issn1001-3555.2018.03.003. [17] LIANG Z H, ZHU Y J. Microwave-assisted synthesis of single-crystalline CuO nanoleaves[J]. Chemistry Letters, 2004, 33(10): 1314-1315. DOI: 10.1246/cl.2004.1314. [18] WANG J, CAO J M, FANG B Q, et al. Synthesis and characterization of multipod, flower-like, and shuttle-like ZnO frameworks in ionic liquids[J]. Materials Letters, 2005, 59(11): 1405-1408. DOI: 10.1016/j.matlet.2004.11.062. [19] 高秀敏. 在离子液体中合成二氧化锆微粉的研究[D]. 哈尔滨: 哈尔滨工程大学,2008. DOI: 10.7666/d.y1436179. [20] LIU Y H, LIU P I, CHUNG L C, et al. Diverse effects of microwave heating on anatase crystallization in ionothermal synthesis of nanostructured TiO2[J]. Journal of Materials Science, 2011, 46(14): 4826-4831. DOI: 10.1007/s10853-011-5394-y. [21] LI X L, LIU M H, CHENG H X, et al. Development of ionic liquid assisted-synthesized nano-silver combined with vascular endothelial growth factor as wound healing in the care of femoral fracture in the children after surgery[J]. Journal of Photochemistry and Photobiology B: Biology, 2018, 183: 385-390. DOI: 10.1016/j.jphotobiol.2018.03.003. [22] JANG H, LEE J R, KIM S J, et al. Concerns and breakthroughs of combining ionic liquids with microwave irradiation for the synthesis of Ru nanoparticles via decarbonylation[J]. Journal of Colloid and Interface Science, 2021, 599: 828-836. DOI: 10.1016/j.jcis.2021.04.046. [23] DING K L, MIAO Z J, LIU Z M, et al. Facile synthesis of high quality TiO2 nanocrystals in ionic liquid via a microwave-assisted process[J]. Journal of the American Chemical Society, 2007, 129(20): 6362-6363. DOI: 10.1021/ja070809c. [24] CAO J M, WANG J, FANG B Q, et al. Microwave-assisted synthesis of flower-like ZnO nanosheet aggregates in a room-temperature ionic liquid[J]. Chemistry Letters, 2004, 33(10): 1332-1333. DOI: 10.1246/cl.2004.1332. [25] 胡栓峰. 在离子液体中合成纳/微米材料的研究[D]. 南京: 南京航空航天大学, 2008. DOI: 10.7666/d.d052429. [26] BÜHLER G, FELDMANN C. Microwave-assisted synthesis of luminescent LaPO4: Ce, Tb nanocrystals in ionic liquids[J]. Angewandte Chemie International Edition, 2006, 45(29): 4864-4867. DOI: 10.1002/anie.200600244. [27] WANG H Q, NANN T. Monodisperse upconverting nanocrystals by microwave-assisted synthesis[J]. ACS Nano, 2009, 3(11): 3804-3808. DOI: 10.1021/nn9012093. [28] JIANG Y, ZHU Y J. Microwave-assisted synthesis of sulfide M2S3 (M = Bi, Sb) nanorods using an ionic liquid[J]. Journal of Physical Chemistry B, 2005, 109(10): 4361-4364. DOI: 10.1021/jp044350. [29] DU C F, LI J R, HUANG X Y, et al. Microwave-assisted ionothermal synthesis of SnSex nanodots: a facile precursor approach towards SnSe2 nanodots/graphene nanocomposites[J]. RSC Advances, 2016, 6(12): 9835-9842. DOI: 10.1039/c5ra24500a. [30] CHEN L F, ZHANG T, CHENG H Y, et al. A microwave assisted ionic liquid route to prepare bivalent Mn5O8 nanoplates for 5-hydroxymethylfurfural oxidation[J]. Nanascale, 2020, 12(34): 17902-17914. DOI: 10.1039/d0nr04738d. [31] 吴织. 低共熔溶剂合成锂离子电池正极材料纳米结构LiMnPO4/C的工艺及性能研究[D]. 南宁: 广西大学, 2017. [32] ZOU H, LI Z H, LUAN Y X, et al. Fast synthesis of nanostructured ZnO particles from an ionic liquid precursor tetrabutylammonium hydroxide[J]. Current Opinion in Solid State and Materials Science, 2010, 14(5): 75-82. DOI: 10.1016/j.cossms.2010.03.001. [33] 蒋亚. 微波加热制备空心和锯齿形貌Bi2Te3晶体[J]. 无机化学学报, 2010, 26(9): 1695-1698. [34] 李建荣, 黄小荥. 微波辅助离子热合成晶态化合物Ag2(tu)3Cl2[C]// 第六届全国环境催化与环境材料学术会议论文集. 成都:中国化学会催化委员会,2009:443-444. [35] 崔岩, 郭成玉, 王晓化, 等. 微波技术在沸石分子筛材料合成中的应用研究进展[J]. 工业催化, 2016, 24(3): 1-9. DOI: 10.3969/j.issn.1008-1143.2016.03.001. [36] YIN Y, MA C H, LI W, et al. Rapid conversion of glucose to 5-hydroxymethylfurfural using a MoCl3 catalyst in an ionic liquid with microwave irradiation[J]. Industrial Crops and Products, 2021, 160: 113091. DOI: 10.1016/j.indcrop.2020.113091. [37] LI Y S, YANG W S. Microwave synthesis of zeolite membranes: a review[J]. Journal of Membrane Science, 2008, 316(1/2): 3-17. DOI: 10.1016/j.memsci.2007.08.054. [38] CHEN X, ZHANG N Q, SUN K N. A vapor-phase corrosion strategy to hierarchically mesoporous nanosheet-assembled gearlike pillar arrays for super-performance lithium storage[J]. Journal of Physical Chemistry C, 2012, 116(40): 21224-21231. DOI: 10.1021/jp3065568. [39] DAI S, JU Y H, GAO H J, et al. Preparation of silica aerogel using ionic liquids as solvents[J]. Chemical Communications, 2000(3): 243-244. DOI: 10.1039/a907147d. [40] JIN K, HUANG X Y, PANG L, et al. [Cu(I)(bpp)]BF4: the first extended coordination network prepared solvothermally in an ionic liquid solvent[J]. Chemical Communications, 2002, 23: 2872-2873. DOI: 10.1039/b209937n. [41] COOPER E R, ANDREWS C D, WHEATLEY P S, et al. Ionic liquids and eutectic mixtures as solvent and template in synthesis of zeolite analogues[J]. Nature, 2004, 430(7003): 1012-1016. DOI: 10.1038/nature02860. [42] ABBOTT A P, CAPPER G, DAVIES D L, et al. Novel solvent properties of choline chloride/urea mixtures[J]. Chemical Communications, 2003, 9(1): 70-71. DOI: 10.1039/b210714g. [43] MA Z, YU J H, DAI S. Preparation of inorganic materials using ionic liquids[J]. Advanced Materials, 2010, 22(2): 261-285. DOI: 10.1002/adma.200900603. [44] 李恒杰. TAPO-5分子筛的合成、改性以及催化性能研究[D]. 太原:山西大学,2018. [45] LEADBEATER N E, TORENIUS H M. A study of the ionic liquid mediated microwave heating of organic solvents[J]. Journal of Organic Chemistry, 2002, 67(9): 3145-3148. DOI: 10.1021/jo016297g. [46] KEGLEVICH G. Microwaves as “Co-catalysts” or as substitute for catalysts in oganophosphorus chemistry[J]. Molecules, 2021, 26(4): 1196. DOI: 10.3390/molecules26041196. [47] BIBBY D M, DALE M P. Synthesis of silica-sodalite from nonaqueous systems[J]. Nature, 1985, 317(6033): 157-158. DOI: 10.1038/317157a0. [48] WILKES J S. A short history of ionic liquids: from molten salts to neoteric solvents[J]. Green Chemistry, 2002, 4(2): 73-80. DOI: 10.1039/b110838g. [49] 徐晓冬, 高秀敏, 刘建清, 等. 微波辅助离子液体法在无机纳米材料合成中的应用[J]. 材料导报, 2008, 22(7): 53-55, 64. [50] BHAWAWET N, ESSNER J B, ATWOOD J L, et al. On the non-innocence of the imidazolium cation in a rapid microwave synthesis of oleylamine-capped gold nanoparticles in an ionic liquid[J]. Chemical Communications, 2018, 54(54): 7523-7526. DOI: 10.1039/c8cc03150a. [51] LEE J H, CHO K K, LEE J R, et al.Manganese fluoride nanoparticles synthesized by microwave irradiation using ionic liquid-ethylene glycol mixtures: room-temperature photoluminescence, crystalline phase, and morphology[J]. Crystal Growth and Design, 2021, 21(3): 1406-1412. DOI: 10.1021/acs.cgd.0c01522. [52] SCHAUMANN J, LOOR M, ÜNAL D, et al. Improving the ZT value of thermoelectrics by nanostructuring: tuning the nanoparticle morphology of Sb2Te3 by using ionic liquids[J]. Dalton Transactions, 2017, 46(3): 656-668. DOI: 10.1039/c6dt04323b. [53] ALAMMAR T, HAMM I, GRASMIK V, et al. Microwave-assisted synthesis of perovskite SrSnO3 nanocrystals in ionic liquids for photocatalytic applications[J]. Inorganic Chemistry, 2017, 56(12): 6920-6932. DOI: 10.1021/acs.inorgchem.7b00279. [54] 刘佩珏. 微波合成新型光催化材料及其光催化性能的研究[D]. 上海: 上海师范大学,2015. DOI: 10.7666/d.D642361. [55] MIAO Y C, LIAN Z C, HUO Y N, et al. Microwave-assisted ionothermal synthesis of hierarchical microcube-like BiOBr with enhanced photocatalytic activity[J]. Chinese Journal of Catalysis, 2018, 39(8): 1411-1417. DOI: 10.1016/S1872-2067(18)63080-3. [56] MENG Y S, HAN W Q, ZHANG Z, et al. LiFePO4 particles coated with N-doped carbon membrane[J]. Journal of Nanoscience and Nanotechnology, 2017, 17(3): 2000-2005. DOI: 10.1166/jnn.2017.12869. [57] TOHIDI M, GHANBARI A, HONARASA F. Synthesis of copper and silver nanoparticles by using microwave-assisted ionic liquid crystal method and their application for nonenzymatic hydrogen peroxide determination[J]. Electrocatalysis, 2021, 12(4): 350-361. DOI: 10.1007/s12678-021-00653-y. [58] WRAGG D S, BYRNE P J, GIRIAT G, et al. In situ comparison of ionothermal kinetics under microwave and conventional heating[J]. Journal of Physical Chemistry C, 2009, 113(48): 20553-20558. DOI: 10.1021/jp907785t. [59] YANG L S, LU H M. Microwave-assisted ionothermal synthesis and characterization of zeolitic imidazolate framework-8[J]. Chinese Journal of Chemistry, 2012, 30(5): 1040-1044. DOI: 10.1002/cjoc.201100595. [60] ZHOU L, LU H M, YANG L S. Microwave ionothermal synthesis of ZIF-61 and its application on the curing process of cyanate ester(CE)[J]. Materials Letters, 2014, 125: 59-62. DOI: 10.1016/j.matlet.2014.03.148. [61] LIAO J H, WU P C, HUANG W C. Ionic liquid as solvent for the synthesis and crystallization of a coordination polymer: (EMI)[Cd(BTC)](EMI = 1-ethyl-3-methylimidazolium, BTC = 1, 3, 5-benzenetricarboxylate)[J]. Crystal Growth and Design, 2006, 6(5): 1062-1063. DOI: 10.1021/cg0504197. [62] ZHANG W, LI C, YUAN Y P, et al. Highly energy- and time-efficient synthesis of porous triazine-based framework: microwave-enhanced ionothermal polymerization and hydrogen uptake[J]. Journal of Materials Chemistry, 2010, 20(31): 6413-6415. DOI: 10.1039/c0jm01392g. [63] LIN Z J, WRAGG D S, MORRIS R E.Microwave-assisted synthesis of anionic metal-organic frameworks under ionothermal conditions[J]. Chemical Communications, 2006(19): 2021-2023. DOI: 10.1039/b600814c. [64] 黄飞, 屈飞强, 魏先文, 等.微波协同离子液体催化合成富马酸二甲酯的工艺研究及应用[J].陕西师范大学学报(自然科学版), 2015, 43(2): 53-58. DOI: 10.15983/j.cnki.jsnu.2015.02.322. |
[1] | 俞青芬. 含六水氯化镁类离子液体的制备及性质研究[J]. 广西师范大学学报(自然科学版), 2017, 35(3): 97-103. |
[2] | 兰宇卫, 易其磊, 黄艳桃, 刘锦玲, 谭言芳. 微波辅助合成CdTe量子点及在太阳能电池中的应用[J]. 广西师范大学学报(自然科学版), 2017, 35(3): 104-110. |
[3] | 成丽春, 胡士齐, 林培豪, 周怀营, 潘顺康. Co添加对Fe-Si基合金微波吸收性能影响研究[J]. 广西师范大学学报(自然科学版), 2013, 31(1): 26-30. |
[4] | 邓华, 许丹丹, 李明顺, 李金城. 不同消解方法分析土壤中重金属含量的比较[J]. 广西师范大学学报(自然科学版), 2010, 28(3): 80-83. |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |