广西师范大学学报(自然科学版) ›› 2022, Vol. 40 ›› Issue (6): 37-49.doi: 10.16088/j.issn.1001-6600.2021080602

• 综述 • 上一篇    下一篇

微波离子热合成研究进展

韩成浩1, 苑玥珂1, 芦天亮1, 王剑峰1,2, 韩丽1,2*   

  1. 1.郑州大学化工学院,河南郑州450001;
    2.郑州大学生态与环境学院,河南郑州450001
  • 收稿日期:2021-08-06 修回日期:2021-10-11 出版日期:2022-11-25 发布日期:2023-01-17
  • 通讯作者: 韩丽(1974—),女,河南商丘人,郑州大学副教授,博士。E-mail:lihan@zzu.edu.cn
  • 基金资助:
    国家自然科学基金青年科学基金(21802125);省部共建煤炭高效利用与绿色化工国家重点实验室开放课题(2020-KF-23)

Progress in Microwave-Assisted Ionothermal Synthesis

HAN Chenghao1, YUAN Yueke1, LU Tianliang1, WANG Jianfeng1,2, HAN Li1,2*   

  1. 1. School of Chemical Engineering, Zhengzhou University, Zhengzhou Henan 450001, China;
    2. School of Ecology and Environment, Zhengzhou University, Zhengzhou Henan 450001, China
  • Received:2021-08-06 Revised:2021-10-11 Online:2022-11-25 Published:2023-01-17

摘要: 微波离子热合成是用离子液体或低共熔混合物做溶剂和模板剂,并辅之以微波加热的一种新型合成技术。它既保留了离子液体/低共熔混合物的低熔点和不易挥发等特点,又具有微波高效节能的特点,不仅为材料合成提供了新的发展视角,也符合碳中和发展目标。本文对微波离子热在材料合成方面的应用进行综述,包括分子筛的合成、纳米材料的合成及其他材料的合成,并对微波离子热合成的发展前景进行展望。

关键词: 微波, 离子热合成, 离子液体, 低共熔混合物, 碳中和

Abstract: Microwave-assisted ionothermal synthesis is a new synthesis technology that uses ionic liquid or low co-melting mixtures as solvents and template agents, supplemented by microwave heating. It not only retains the characteristics of low melting point and non-volatile of ionic liquid/low co-melting mixture, but also provides a new development perspective for material synthesis, conforms to the carbon neutralization development goal. In this paper, the application of microwave ion heat in material synthesis is reviewed, including the synthesis of molecular decoration, the synthesis of nanomaterials and the synthesis of some other materials. And the prospect of microwave ion thermal synthesis is explored.

Key words: microwave, ionothermal synthesis, ionic liquid, eutectic mixture, carbon neutrality

中图分类号: 

  • TQ031.2
[1] 吴烨, 金毅, 周宁怀.微波辐射下固相合成Cu(Gly)2·H2O的微型实验[J].广西师范大学学报(自然科学版), 2000, 18(S1): 74-76. DOI: 10.16088/j.issn.1001-6600.2000.s1.034.
[2] XU Y P, TIAN Z J, WANG S J, et al. Microwave-enhanced ionothermal synthesis of aluminophosphate molecular sieves[J]. Angewandte Chemie International Edition, 2006, 45(24): 3965-3970. DOI: 10.1002/anie.200600054.
[3] CAI R, LIU Y, GU S, et al.Ambient pressure dry-gel conversion method for zeolite MFI synthesis using ionic liquid and microwave heating[J]. Journal of the American Chemical Society, 2010, 132(37): 12776-12777. DOI: 10.1021/ja101649b.
[4] NG E P, WONG K L, NG D T L, et al. AlPO-5 nanocrystals templated by 1-ethyl-2, 3-dimethylimidazolium hydroxide and their textural and water sorption properties[J]. Materials Chemistry and Physics, 2017, 188: 49-57. DOI: 10.1016/j.matchemphys.2016.12.031.
[5] NG E P, NG D T L, AWALA H, et al. Microwave synthesis of colloidal stable AlPO-5 nanocrystals with high water adsorption capacity and unique morphology[J]. Materials Letters, 2014, 132: 126-129. DOI: 10.1016/j.matlet.2014.06.022.
[6] 臧丽君, 邵国林, 李昆兰, 等. 微波离子热合成纳米方钠石粉体[J]. 大连工业大学学报, 2013, 32(3): 220-223. DOI: 10.19670/j.cnki.dlgydxxb.2013.03.018.
[7] 邵国林, 魏立纲, 马英冲, 等. 离子热法合成方钠石膜及其在金属防腐方面的应用[J]. 化工学报, 2015, 66(S1): 292-296. DOI: 10.11949/j.issn.0438-1157.20150136.
[8] JHUNG S H, CHANG J S, HWANG Y K, et al. Crystal morphology control of AFI type molecular sieves with microwave irradiation[J]. Journal of Materials Chemistry, 2004, 14(2): 280-285. DOI: 10.1039/b309142b.
[9] VENNA S R, CARREON M A. Microwave assisted phase transformation of silicoaluminophosphate zeolite crystals[J]. Journal of Materials Chemistry, 2009, 19(20): 3138-3140. DOI: 10.1039/b903316e.
[10] ZHAO X H, WEN J J, ZHAO J B, et al. Hierarchically structured SAPO-5 molecular sieve catalysts with tailored mesoporosity for alkylation reaction[J]. Journal of Porous Materials, 2015, 22(3): 577-584. DOI: 10.1007/s10934-015-9929-5.
[11] 张峻维, 段维婷, 赵新红. 纳米薄层SAPO-5分子筛的离子热合成及催化性能[J]. 精细化工, 2020, 37(3): 547-554. DOI: 10.13550/j.jxhg.20190693.
[12] ZHAO X H, ZHANG X X, HAO Z X, et al. Synthesis of FeAPO-5 molecular sieves with high iron contents via improved ionothermal method and their catalytic performances in phenol hydroxylation[J]. Journal of Porous Materials, 2018, 25(4): 1007-1016. DOI: 10.1007/s10934-017-0511-1.
[13] ZHAO X H, DUAN W T, WANG Q P, et al. Microwave-assisted ionothermal synthesis of Fe-LEV molecular sieve with high iron content in low-dosage of eutectic mixture[J]. Microporous and Mesoporous Materials, 2019, 275: 253-262. DOI: 10.1016/j.micromeso.2018.09.005.
[14] ZHAO X H, KANG C X, WANG H, et al. Ionothermal synthesis of FeAlPO-16 molecular sieve by microwave irradiation in eutectic mixture[J]. Journal of Porous Materials, 2011, 18(5): 615-621. DOI: 10.1007/s10934-010-9417-x.
[15] ZHAO X H, WANG H, KANG C X, et al. Ionothermal synthesis of mesoporous SAPO-5 molecular sieves by microwave heating and using eutectic solvent as structure-directing agent[J]. Microporous & Mesoporous Materials, 2012, 151: 501-505. DOI: 10.1016/j.micromeso.2011.10.009.
[16] 李恒杰, 高鹏飞, 薛晓璐, 等. 低共熔体中微波离子热法合成TAPO-5分子筛[J]. 分子催化, 2018, 32(3): 218-227. DOI: 10.16084/j.cnki.issn1001-3555.2018.03.003.
[17] LIANG Z H, ZHU Y J. Microwave-assisted synthesis of single-crystalline CuO nanoleaves[J]. Chemistry Letters, 2004, 33(10): 1314-1315. DOI: 10.1246/cl.2004.1314.
[18] WANG J, CAO J M, FANG B Q, et al. Synthesis and characterization of multipod, flower-like, and shuttle-like ZnO frameworks in ionic liquids[J]. Materials Letters, 2005, 59(11): 1405-1408. DOI: 10.1016/j.matlet.2004.11.062.
[19] 高秀敏. 在离子液体中合成二氧化锆微粉的研究[D]. 哈尔滨: 哈尔滨工程大学,2008. DOI: 10.7666/d.y1436179.
[20] LIU Y H, LIU P I, CHUNG L C, et al. Diverse effects of microwave heating on anatase crystallization in ionothermal synthesis of nanostructured TiO2[J]. Journal of Materials Science, 2011, 46(14): 4826-4831. DOI: 10.1007/s10853-011-5394-y.
[21] LI X L, LIU M H, CHENG H X, et al. Development of ionic liquid assisted-synthesized nano-silver combined with vascular endothelial growth factor as wound healing in the care of femoral fracture in the children after surgery[J]. Journal of Photochemistry and Photobiology B: Biology, 2018, 183: 385-390. DOI: 10.1016/j.jphotobiol.2018.03.003.
[22] JANG H, LEE J R, KIM S J, et al. Concerns and breakthroughs of combining ionic liquids with microwave irradiation for the synthesis of Ru nanoparticles via decarbonylation[J]. Journal of Colloid and Interface Science, 2021, 599: 828-836. DOI: 10.1016/j.jcis.2021.04.046.
[23] DING K L, MIAO Z J, LIU Z M, et al. Facile synthesis of high quality TiO2 nanocrystals in ionic liquid via a microwave-assisted process[J]. Journal of the American Chemical Society, 2007, 129(20): 6362-6363. DOI: 10.1021/ja070809c.
[24] CAO J M, WANG J, FANG B Q, et al. Microwave-assisted synthesis of flower-like ZnO nanosheet aggregates in a room-temperature ionic liquid[J]. Chemistry Letters, 2004, 33(10): 1332-1333. DOI: 10.1246/cl.2004.1332.
[25] 胡栓峰. 在离子液体中合成纳/微米材料的研究[D]. 南京: 南京航空航天大学, 2008. DOI: 10.7666/d.d052429.
[26] BÜHLER G, FELDMANN C. Microwave-assisted synthesis of luminescent LaPO4: Ce, Tb nanocrystals in ionic liquids[J]. Angewandte Chemie International Edition, 2006, 45(29): 4864-4867. DOI: 10.1002/anie.200600244.
[27] WANG H Q, NANN T. Monodisperse upconverting nanocrystals by microwave-assisted synthesis[J]. ACS Nano, 2009, 3(11): 3804-3808. DOI: 10.1021/nn9012093.
[28] JIANG Y, ZHU Y J. Microwave-assisted synthesis of sulfide M2S3 (M = Bi, Sb) nanorods using an ionic liquid[J]. Journal of Physical Chemistry B, 2005, 109(10): 4361-4364. DOI: 10.1021/jp044350.
[29] DU C F, LI J R, HUANG X Y, et al. Microwave-assisted ionothermal synthesis of SnSex nanodots: a facile precursor approach towards SnSe2 nanodots/graphene nanocomposites[J]. RSC Advances, 2016, 6(12): 9835-9842. DOI: 10.1039/c5ra24500a.
[30] CHEN L F, ZHANG T, CHENG H Y, et al. A microwave assisted ionic liquid route to prepare bivalent Mn5O8 nanoplates for 5-hydroxymethylfurfural oxidation[J]. Nanascale, 2020, 12(34): 17902-17914. DOI: 10.1039/d0nr04738d.
[31] 吴织. 低共熔溶剂合成锂离子电池正极材料纳米结构LiMnPO4/C的工艺及性能研究[D]. 南宁: 广西大学, 2017.
[32] ZOU H, LI Z H, LUAN Y X, et al. Fast synthesis of nanostructured ZnO particles from an ionic liquid precursor tetrabutylammonium hydroxide[J]. Current Opinion in Solid State and Materials Science, 2010, 14(5): 75-82. DOI: 10.1016/j.cossms.2010.03.001.
[33] 蒋亚. 微波加热制备空心和锯齿形貌Bi2Te3晶体[J]. 无机化学学报, 2010, 26(9): 1695-1698.
[34] 李建荣, 黄小荥. 微波辅助离子热合成晶态化合物Ag2(tu)3Cl2[C]// 第六届全国环境催化与环境材料学术会议论文集. 成都:中国化学会催化委员会,2009:443-444.
[35] 崔岩, 郭成玉, 王晓化, 等. 微波技术在沸石分子筛材料合成中的应用研究进展[J]. 工业催化, 2016, 24(3): 1-9. DOI: 10.3969/j.issn.1008-1143.2016.03.001.
[36] YIN Y, MA C H, LI W, et al. Rapid conversion of glucose to 5-hydroxymethylfurfural using a MoCl3 catalyst in an ionic liquid with microwave irradiation[J]. Industrial Crops and Products, 2021, 160: 113091. DOI: 10.1016/j.indcrop.2020.113091.
[37] LI Y S, YANG W S. Microwave synthesis of zeolite membranes: a review[J]. Journal of Membrane Science, 2008, 316(1/2): 3-17. DOI: 10.1016/j.memsci.2007.08.054.
[38] CHEN X, ZHANG N Q, SUN K N. A vapor-phase corrosion strategy to hierarchically mesoporous nanosheet-assembled gearlike pillar arrays for super-performance lithium storage[J]. Journal of Physical Chemistry C, 2012, 116(40): 21224-21231. DOI: 10.1021/jp3065568.
[39] DAI S, JU Y H, GAO H J, et al. Preparation of silica aerogel using ionic liquids as solvents[J]. Chemical Communications, 2000(3): 243-244. DOI: 10.1039/a907147d.
[40] JIN K, HUANG X Y, PANG L, et al. [Cu(I)(bpp)]BF4: the first extended coordination network prepared solvothermally in an ionic liquid solvent[J]. Chemical Communications, 2002, 23: 2872-2873. DOI: 10.1039/b209937n.
[41] COOPER E R, ANDREWS C D, WHEATLEY P S, et al. Ionic liquids and eutectic mixtures as solvent and template in synthesis of zeolite analogues[J]. Nature, 2004, 430(7003): 1012-1016. DOI: 10.1038/nature02860.
[42] ABBOTT A P, CAPPER G, DAVIES D L, et al. Novel solvent properties of choline chloride/urea mixtures[J]. Chemical Communications, 2003, 9(1): 70-71. DOI: 10.1039/b210714g.
[43] MA Z, YU J H, DAI S. Preparation of inorganic materials using ionic liquids[J]. Advanced Materials, 2010, 22(2): 261-285. DOI: 10.1002/adma.200900603.
[44] 李恒杰. TAPO-5分子筛的合成、改性以及催化性能研究[D]. 太原:山西大学,2018.
[45] LEADBEATER N E, TORENIUS H M. A study of the ionic liquid mediated microwave heating of organic solvents[J]. Journal of Organic Chemistry, 2002, 67(9): 3145-3148. DOI: 10.1021/jo016297g.
[46] KEGLEVICH G. Microwaves as “Co-catalysts” or as substitute for catalysts in oganophosphorus chemistry[J]. Molecules, 2021, 26(4): 1196. DOI: 10.3390/molecules26041196.
[47] BIBBY D M, DALE M P. Synthesis of silica-sodalite from nonaqueous systems[J]. Nature, 1985, 317(6033): 157-158. DOI: 10.1038/317157a0.
[48] WILKES J S. A short history of ionic liquids: from molten salts to neoteric solvents[J]. Green Chemistry, 2002, 4(2): 73-80. DOI: 10.1039/b110838g.
[49] 徐晓冬, 高秀敏, 刘建清, 等. 微波辅助离子液体法在无机纳米材料合成中的应用[J]. 材料导报, 2008, 22(7): 53-55, 64.
[50] BHAWAWET N, ESSNER J B, ATWOOD J L, et al. On the non-innocence of the imidazolium cation in a rapid microwave synthesis of oleylamine-capped gold nanoparticles in an ionic liquid[J]. Chemical Communications, 2018, 54(54): 7523-7526. DOI: 10.1039/c8cc03150a.
[51] LEE J H, CHO K K, LEE J R, et al.Manganese fluoride nanoparticles synthesized by microwave irradiation using ionic liquid-ethylene glycol mixtures: room-temperature photoluminescence, crystalline phase, and morphology[J]. Crystal Growth and Design, 2021, 21(3): 1406-1412. DOI: 10.1021/acs.cgd.0c01522.
[52] SCHAUMANN J, LOOR M, ÜNAL D, et al. Improving the ZT value of thermoelectrics by nanostructuring: tuning the nanoparticle morphology of Sb2Te3 by using ionic liquids[J]. Dalton Transactions, 2017, 46(3): 656-668. DOI: 10.1039/c6dt04323b.
[53] ALAMMAR T, HAMM I, GRASMIK V, et al. Microwave-assisted synthesis of perovskite SrSnO3 nanocrystals in ionic liquids for photocatalytic applications[J]. Inorganic Chemistry, 2017, 56(12): 6920-6932. DOI: 10.1021/acs.inorgchem.7b00279.
[54] 刘佩珏. 微波合成新型光催化材料及其光催化性能的研究[D]. 上海: 上海师范大学,2015. DOI: 10.7666/d.D642361.
[55] MIAO Y C, LIAN Z C, HUO Y N, et al. Microwave-assisted ionothermal synthesis of hierarchical microcube-like BiOBr with enhanced photocatalytic activity[J]. Chinese Journal of Catalysis, 2018, 39(8): 1411-1417. DOI: 10.1016/S1872-2067(18)63080-3.
[56] MENG Y S, HAN W Q, ZHANG Z, et al. LiFePO4 particles coated with N-doped carbon membrane[J]. Journal of Nanoscience and Nanotechnology, 2017, 17(3): 2000-2005. DOI: 10.1166/jnn.2017.12869.
[57] TOHIDI M, GHANBARI A, HONARASA F. Synthesis of copper and silver nanoparticles by using microwave-assisted ionic liquid crystal method and their application for nonenzymatic hydrogen peroxide determination[J]. Electrocatalysis, 2021, 12(4): 350-361. DOI: 10.1007/s12678-021-00653-y.
[58] WRAGG D S, BYRNE P J, GIRIAT G, et al. In situ comparison of ionothermal kinetics under microwave and conventional heating[J]. Journal of Physical Chemistry C, 2009, 113(48): 20553-20558. DOI: 10.1021/jp907785t.
[59] YANG L S, LU H M. Microwave-assisted ionothermal synthesis and characterization of zeolitic imidazolate framework-8[J]. Chinese Journal of Chemistry, 2012, 30(5): 1040-1044. DOI: 10.1002/cjoc.201100595.
[60] ZHOU L, LU H M, YANG L S. Microwave ionothermal synthesis of ZIF-61 and its application on the curing process of cyanate ester(CE)[J]. Materials Letters, 2014, 125: 59-62. DOI: 10.1016/j.matlet.2014.03.148.
[61] LIAO J H, WU P C, HUANG W C. Ionic liquid as solvent for the synthesis and crystallization of a coordination polymer: (EMI)[Cd(BTC)](EMI = 1-ethyl-3-methylimidazolium, BTC = 1, 3, 5-benzenetricarboxylate)[J]. Crystal Growth and Design, 2006, 6(5): 1062-1063. DOI: 10.1021/cg0504197.
[62] ZHANG W, LI C, YUAN Y P, et al. Highly energy- and time-efficient synthesis of porous triazine-based framework: microwave-enhanced ionothermal polymerization and hydrogen uptake[J]. Journal of Materials Chemistry, 2010, 20(31): 6413-6415. DOI: 10.1039/c0jm01392g.
[63] LIN Z J, WRAGG D S, MORRIS R E.Microwave-assisted synthesis of anionic metal-organic frameworks under ionothermal conditions[J]. Chemical Communications, 2006(19): 2021-2023. DOI: 10.1039/b600814c.
[64] 黄飞, 屈飞强, 魏先文, 等.微波协同离子液体催化合成富马酸二甲酯的工艺研究及应用[J].陕西师范大学学报(自然科学版), 2015, 43(2): 53-58. DOI: 10.15983/j.cnki.jsnu.2015.02.322.
[1] 俞青芬. 含六水氯化镁类离子液体的制备及性质研究[J]. 广西师范大学学报(自然科学版), 2017, 35(3): 97-103.
[2] 兰宇卫, 易其磊, 黄艳桃, 刘锦玲, 谭言芳. 微波辅助合成CdTe量子点及在太阳能电池中的应用[J]. 广西师范大学学报(自然科学版), 2017, 35(3): 104-110.
[3] 成丽春, 胡士齐, 林培豪, 周怀营, 潘顺康. Co添加对Fe-Si基合金微波吸收性能影响研究[J]. 广西师范大学学报(自然科学版), 2013, 31(1): 26-30.
[4] 邓华, 许丹丹, 李明顺, 李金城. 不同消解方法分析土壤中重金属含量的比较[J]. 广西师范大学学报(自然科学版), 2010, 28(3): 80-83.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发