广西师范大学学报(自然科学版) ›› 2021, Vol. 39 ›› Issue (5): 64-77.doi: 10.16088/j.issn.1001-6600.2020073102

• 研究论文 • 上一篇    下一篇

基于优化极限学习机的公交行程时间预测方法

许伦辉*, 苏楠, 骈宇庄, 林培群   

  1. 华南理工大学 土木与交通学院,广东 广州 510640
  • 收稿日期:2020-07-31 修回日期:2020-12-18 出版日期:2021-09-25 发布日期:2021-10-19
  • 通讯作者: 许伦辉(1965—),男,江西南康人,华南理工大学教授,博导。E-mail:lhxu@scut.edu.cn
  • 基金资助:
    国家自然科学基金(61572233);广东省科技计划项目(2017B030307001);广东大学生科技创新培育专项(pdjh2020a0030)

Bus Travel Time Prediction Based on Extreme Learning Machine Optimized by Artificial Bee Colony Algorithm

XU Lunhui*, SU Nan, PIAN Yuzhuang, LIN Peiqun   

  1. School of Civil Engineering and Transportation, South China University of Technology, Guangzhou Guangdong 510640, China
  • Received:2020-07-31 Revised:2020-12-18 Online:2021-09-25 Published:2021-10-19

摘要: 为提高城市公交车辆行程时间的预测精度,在分析历史数据和交通流变化特性基础上,提出了一种基于人工蜂群优化的极限学习机的组合预测模型(artificial bee colony-extreme learning machine, ABC-ELM)。首先,基于GPS等数据提取站间距离、时间周期及天气情况等动静态特征因素;其次,推算出公交车辆的站点停靠时间;接着,将人工蜂群优化算法(artificial bee colony algorithm, ABC)嵌入到传统极限学习机算法(extreme learning machine, ELM)中,以解决其在行程时间预测中收敛速度慢、初始权值和阈值选择困难的问题;最后,基于ABC-ELM算法预测公交车辆在目标路段的行程时间。以深圳市620路公交车的真实运营数据为基础进行方法验证。结果表明:与广泛采用的BP神经网络、SVM和ELM相比,本文方法在不同道路环境中均能保持较低的预测误差(RMSE误差:高峰/平峰为11.91/8.72,工作日/非工作日为11.46/9.54,晴天/雨天为10.83/12.31;决定系数R2:高峰/平峰为0.87/0.92,工作日/非工作日为0.83/0.88,晴天/雨天为0.89/0.85),鲁棒性较强,更适用于复杂城市道路环境中的干线公交车辆的行程时间预测。

关键词: 城市交通, 公交车辆, 行程时间预测, 极限学习机, 人工蜂群算法

Abstract: In order to improve the prediction accuracy of bus travel time, a combined prediction model based on artificial bee colony optimization and extreme learning machine (artificial bee colony-extreme learning machine, ABC-ELM) are proposed after analyzing historical data and the characteristics of traffic flow. First, dynamic and static characteristics like distance between stations, time period and weather conditions are extracted by using IC card and GPS data; after that the dwell time of the station is calculated. Then, the artificial bee colony optimization algorithm (ABC) is embedded in the traditional extreme learning machine algorithm (ELM) to solve the problem of slow convergence speed and difficulty in selecting initial weights and thresholds ELM in bus travel time prediction. Finally, the travel time of the bus on target road section is predicted by using the ABC-ELM algorithm. The model is verified based on the real operating data of Shenzhen Bus 620. The results show that, compared with the widely used BP neural network, SVM and ELM, the method proposed in this paper can maintain lower prediction errors in different road environments and has strong robustness (the RMSE error in peak/off-peak hour is 11.91/8.72, in workday/non-work day is 11.46/9.54,in sunny/rainy day is 10.83/12.31; the coefficient of determination R2 in peak/off-peak hour is 0.87/0.92 in workday/non-work day is 0.83/0.88, in sunny/rainy day is 0.89/0.85), which makes it more suitable for travel time prediction in complex urban road environment and for main line bus.

Key words: urban traffic, public bus, travel time prediction, extreme learning machine, artificial bee colony algorithm

中图分类号: 

  • U491.17
[1] 胡郁葱,宫曼琳,谢昳辰,等. 网络预约出租汽车营运模式的四方博弈模型[J]. 公路交通科技, 2020, 37(2):130-136.
[2] YU H Y,CHEN D G,WU Z H,et al. Headway-based bus bunching prediction using transit smart card data[J]. Transportation Research Part C:Emerging Technologies,2016,72:45-59. DOI:10.1016/j.trc.2016.09.007.
[3] HE P L,JIANG G Y,LAM S K,et al. Travel-time prediction of bus journey with multiple bus trips[J]. IEEE Transactions on Intelligent Transportation Systems,2019,20(11):4192-4205. DOI:10.1109/TITS.2018.2883342.
[4] MA J M,CHAN J,RISTANOSKI G,et al. Bus travel time prediction with real-time traffic information[J]. Transportation Research Part C:Emerging Technologies,2019,105:536-549. DOI:10.1016/j.trc.2019.06.008.
[5] KUMAR B A,VANAJAKSHI L,SUBRAMANIAN S C. Bus travel time prediction using a time-space discretization approach[J]. Transportation Research Part C:Emerging Technologies,2017,79:308-332. DOI:10.1016/j.trc.2017.04.002.
[6] 李华民,吴俊美,孙棣华,等. 基于RFID电子车牌数据的公交行程时间预测方法[J]. 中国公路学报,2019,32(8):165-173,182. DOI:10.19721/j.cnki.1001-7372.2019.08.015.
[7] 宋现敏,刘明鑫,马林,等. 基于极限学习机的公交行程时间预测方法[J]. 交通运输系统工程与信息,2018,18(5):136-142,150. DOI:10.16097/j.cnki.1009-6744.2018.05.020.
[8] 刘迎,过秀成,周润瑄,等. 基于多源数据融合的干线公交车辆行程时间预测[J]. 交通运输系统工程与信息,2019,19(4):124-129,148. DOI:10.16097/j.cnki.1009-6744.2019.04.018.
[9] 苗旭,王忠宇,吴兵,等. 考虑前序路段状态的公交到站时间双层BPNN预测模型[J]. 交通运输系统工程与信息,2020,20(2):127-133. DOI:10.16097/j.cnki.1009-6744.2020.02.019.
[10] BAI C,PENG Z R,LU Q C,et al. Dynamic bus travel time prediction models on road with multiple bus routes[J]. Computational Intelligence and Neuroscience,2015,2015:432389. DOI:10.1155/2015/432389.
[11] JEONG R,RILETT R. Bus arrival time prediction using artificial neural network model[C] // Proceedings. The 7th International IEEE Conference on Intelligent Transportation Systems. Piscataway,NJ:IEEE,2004:988-993. DOI:10.1109/ITSC.2004.1399041.
[12] KVIESIS A,ZACEPINS A,KOMASILOVS V,et al. Bus arrival time prediction with limited data set using regression models[C] // Proceedings of the 4th International Conference on Vehicle Technology and Intelligent Transport Systems- Volume 1: RESIST. Francisco:Science and Technology Publications,2018:643-647. DOI:10.5220/0006816306430647.
[13] 周雪梅,杨晓光,王磊. 公交车辆行程时间预测方法研究[J]. 交通与计算机,2002,20(6):12-14. DOI:10.3963/j.issn.1674-4861.2002.06.004.
[14] YU H Y,WU Z H,CHEN D W,et al. Probabilistic prediction of bus headway using relevance vector machine regression[J]. IEEE Transactions on Intelligent Transportation Systems,2017,18(7):1772-1781. DOI:10.1109/TITS.2016.2620483.
[15] YU B,LAM W H K,TAM M L. Bus arrival time prediction at bus stop with multiple routes[J]. Transportation Research Part C:Emerging Technologies,2011,19(6):1157-1170. DOI:10.1016/j.trc.2011.01.003.
[16] KARABOGA D,AKAY B,OZTURK C. Artificial bee colony (ABC) optimization algorithm for training feed-forward neural networks[C] // 2007 Modeling Decisions for Artificial Intelligence 4th International Conference. Berlin:Springer,2007:318-329. DOI:10.1007/978-3-540-73729-2_30.
[17] SHALABY A,FARHAN A. Prediction model of bus arrival and departure times using AVL and APC data[J]. Journal of Public Transportation,2004,7(1):41-61. DOI:10.5038/2375-0901.7.1.3.
[18] HUANG Z L,XU L H,LIN Y J,et al. Citywide metro-to-bus transfer behavior identification based on combined data from smart cards and GPS[J]. Applied Sciences,2019,9(17):3597. DOI:10.3390/app9173597.
[19] HUANG Z L, XU L H, LIN Y J. Multi-stage pedestrian positioning using filtered WiFi scanner data in an urban road environment[J]. Sensors, 2020, 20(11):3259. DOI:10.3390/s20113259.
[20] WU P,HUANG Z L,PIAN Y Z,et al. A combined deep learning method with attention-based LSTM model for short-term traffic speed forecasting[J]. Journal of Advanced Transportation, 2020, 2020:8863724. DOI:10.1155/2020/8863724.
[21] 王芳杰,王福建,王雨晨,等. 基于LightGBM算法的公交行程时间预测[J].交通运输系统工程与信息,2019,19(2):116-121. DOI:10.16097/j.cnki.1009-6744.2019.02.017.
[22] 韩勇,周林,高鹏,等. 基于BP神经网络的公交动态行程时间预测方法研究[J].中国海洋大学学报(自然科学版),2020,50(2):142-154. DOI:10.16441/j.cnki.hdxb.20180285.
[23] HUANG G B,ZHU Q Y,SIEW C K. Extreme learning machine:theory and applications[J]. Neurocomputing,2006,70(1/2/3):489-501. DOI:10.1016/j.neucom.2005.12.126.
[24] KARABOGA D,BASTURK B. A powerful and efficient algorithm for numerical function optimization:artificial bee colony (ABC) algorithm[J]. Journal of global optimization,2007,39:459-471. DOI:10.1007/s10898-007-9149-x.
[25] 彭新建,翁小雄. 基于萤火虫算法优化BP神经网络的公交行程时间预测[J].广西师范大学学报(自然科学版),2017,35(1):28-36. DOI:10.16088/j.issn.1001-6600.2017.01.005.
[26] 尹安藤. 基于公交GPS和IC卡数据的公交OD推算[D]. 哈尔滨:哈尔滨工业大学,2017.
[1] 徐建闽, 韦佳, 首艳芳. 基于博弈论-云模型的城市道路交通运行状态综合评价[J]. 广西师范大学学报(自然科学版), 2020, 38(4): 1-10.
[2] 吕攀龙, 翁小雄, 彭新建. 基于差分进化算法SVM的公交通勤乘客识别[J]. 广西师范大学学报(自然科学版), 2019, 37(1): 106-114.
[3] 黄玮琪, 靳文舟, 黄靖翔, 韩博文. 不同市场策略下的定制公交定价问题[J]. 广西师范大学学报(自然科学版), 2018, 36(2): 8-17.
[4] 彭新建,翁小雄. 基于萤火虫算法优化BP神经网络的公交行程时间预测[J]. 广西师范大学学报(自然科学版), 2017, 35(1): 28-36.
[5] 邝先验, 朱磊, 吴赟, 徐晨. 基于Adaboost算法和颜色特征的公交车辆视频检测[J]. 广西师范大学学报(自然科学版), 2016, 34(1): 9-18.
[6] 张超群, 郑建国, 李陶深. 侦察蜂在人工蜂群算法中的作用[J]. 广西师范大学学报(自然科学版), 2013, 31(3): 72-80.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 黄李, 邹艳丽, 王意, 李可. 分布式电站的3种入网方式比较研究[J]. 广西师范大学学报(自然科学版), 2017, 35(3): 30 -36 .
[2] 邓金虹, 赵俊玲. 非回归点集中的SS混沌集[J]. 广西师范大学学报(自然科学版), 2011, 29(2): 40 -44 .
[3] 黄婉云, 苏桂发, 潘成学, 覃江克, 唐煌, 义祥辉. 构象限制二肽的合成及其晶体结构研究[J]. 广西师范大学学报(自然科学版), 2011, 29(2): 56 -60 .
[4] 苏旭, 刘玉萍. 青海省药用植物野薄荷光合特性的研究[J]. 广西师范大学学报(自然科学版), 2011, 29(2): 76 -81 .
[5] 卢其西, 林勇, 宾石玉, 唐章生, 彭婷. 罗非鱼6个家系的低温耐寒测定分析[J]. 广西师范大学学报(自然科学版), 2011, 29(2): 104 -109 .
[6] 张仁津, 唐翠芳, 刘彬. 基于人工神经网络游戏程序的研究和设计[J]. 广西师范大学学报(自然科学版), 2011, 29(2): 119 -124 .
[7] 鄂旭, 邵良杉, 李胜, 王全铁. 一种基于关联度的区间型数据离散化方法[J]. 广西师范大学学报(自然科学版), 2011, 29(2): 134 -137 .
[8] 吕虹, 秦永彬, 罗聪. 基于Memetic算法的飞机地面作业调度问题研究[J]. 广西师范大学学报(自然科学版), 2011, 29(2): 145 -150 .
[9] 张新明, 张玉珊, 李振云. 一种改进的矩不变图像分割方法[J]. 广西师范大学学报(自然科学版), 2011, 29(2): 185 -190 .
[10] 熊顺清, 周卫红. 一种基于非采样Contourlet变换的图像水印算法[J]. 广西师范大学学报(自然科学版), 2011, 29(2): 195 -199 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发