广西师范大学学报(自然科学版) ›› 2021, Vol. 39 ›› Issue (5): 58-63.doi: 10.16088/j.issn.1001-6600.2020122201

• 综述 • 上一篇    下一篇

CYP2D亚家族基因及其进化机制研究进展

梁秋芳1,2, 董小燕1,2, 冯平1,2*   

  1. 1.珍稀濒危动植物生态与环境保护教育部重点实验室(广西师范大学), 广西 桂林 541006;
    2.广西师范大学 生命科学学院,广西 桂林 541006
  • 收稿日期:2020-12-22 修回日期:2021-03-07 出版日期:2021-09-25 发布日期:2021-10-19
  • 通讯作者: 冯平(1986—),女,广西北海人,广西师范大学副教授,博士。E-mail: fengfengping1234@163.com
  • 基金资助:
    国家自然科学基金(32060111); 广西自然科学基金(2018GXNSFBA281010); 广西师范大学珍稀濒危动植物生态与环境保护教育部重点实验室基金(GKN.19-A-01-07)

Advanced in CYP2D Subfamily Genes and Evolutionary Mechanisms

LIANG Qiufang1,2, DONG Xiaoyan1,2, FENG Ping1,2*   

  1. 1. Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministryof Education, Guilin Guangxi 541006, China;
    2. College of Life Sciences, Guangxi Normal University, Guilin Guangxi 541006, China
  • Received:2020-12-22 Revised:2021-03-07 Online:2021-09-25 Published:2021-10-19

摘要: CYP2D酶在药物代谢及有毒物质的解毒过程中起重要作用,而认识和了解CYP2D亚家族基因的适应性进化有助于理解CYP2D酶对有毒物质的作用机制。研究表明,CYP2D亚家族基因在进化过程中具有谱系特异性扩张现象。此外,基因复制、基因转换以及选择压力对基因的进化具有一定的影响,但对不同谱系产生的影响程度不同。本文从CYP2D亚家族基因的结构、功能及其进化机制等方面进行综述,以期为理解CYP2D亚家族基因的适应性进化提供理论依据。

关键词: 细胞色素P450, CYP2D基因, 基因复制, 基因转换, 选择压力

Abstract: CYP2D enzyme plays an important role in drug metabolism and the detoxification of toxic substances. Knowing and understanding the adaptive evolution of CYP2D subfamily genes helps to understand the mechanism of CYP2D enzymes on toxic substances. Research has shown that CYP2D subfamily genes have lineage-specific expansion in the evolutionary process. In addition, gene duplication, gene conversion, and selective pressure had a certain influence on the evolution of genes, but the effect varied with different lineages. In this paper, the structure, function and evolutionary mechanism of CYP2D subfamily genes were reviewed, in order to provide a theoretical basis for understanding the adaptive evolution of CYP2D subfamily genes.

Key words: cytochrome P450, CYP2D genes, gene duplication, gene conversion, selective pressure

中图分类号: 

  • Q31
[1] FINNIGAN J D, YOUNG C, COOK D J, et al. Cytochromes P450 (P450s): A review of the class system with a focus on prokaryotic P450s[J]. Advances in Protein Chemistry and Structural Biology, 2020, 122: 289-320. DOI:10.1016/bs.apcsb.2020.06.005.
[2] SEZUTSU H, LE GOFF G, FEYEREISEN R. Origins of P450 diversity[J]. Philosophical Transactions of the Royal Society Series B: Biological Sciences, 2013, 368(1612): 20120428. DOI:10.1098/rstb.2012.0428.
[3] GUENGERICH F P. Intersection of the roles of cytochrome P450 enzymes with xenobiotic and endogenous substrates: Relevance to toxicity and drug interactions[J]. Chemical Research in Toxicology, 2017, 30(1): 2-12. DOI:10.1021/acs.chemrestox.6b00226.
[4] UEHARA S, UNO Y, HAGIHIRA Y, et al. Marmoset cytochrome P450 2D8 in livers and small intestines metabolizes typical human P450 2D6 substrates, metoprolol, bufuralol and dextromethorphan[J]. Xenobiotica: the Fate of Foreign Compounds in Biological Systems, 2015, 45(9): 766-772. DOI:10.3109/00498254.2015.1019595.
[5] KITANOVIC S, ORR T J, SPALINK D, et al. Role of cytochrome P450 2B sequence variation and gene copy number in facilitating dietary specialization in mammalian herbivores[J]. Molecular Ecology, 2018, 27(3): 723-736. DOI:10.1111/mec.14480.
[6] MALENKE J R, MAGNANOU E, THOMAS K, et al. Cytochrome P450 2B diversity and dietary novelty in the herbivorous, desert woodrat (Neotoma lepida)[J]. PLoS ONE, 2012, 7(8): e41510. DOI:10.1371/journal.pone.0041510.
[7] NEBERT D W, ADESNIK M, COON M J, et al. The P450 gene superfamily: recommended nomenclature[J]. DNA, 1987, 6(1): 1-11. DOI:10.1089/dna.1987.6.1.
[8] CHANEY M E, PIONTKIVSKA H, TOSI A J. Retained duplications and deletions of CYP2C genes among primates[J]. Molecular Phylogenetics and Evolution, 2018, 125: 204-212. DOI:10.1016/j.ympev.2018.03.037.
[9] KONSTANDI M, JOHNSON E O, LANG M A. Consequences of psychophysiological stress on cytochrome P450-catalyzed drug metabolism[J]. Neuroscience and Biobehavioral Reviews, 2014, 45: 149-167. DOI:10.1016/j.neubiorev.2014.05.011.
[10] GOTOH O. Evolution of cytochrome P450 genes from the viewpoint of genome informatics[J]. Biological and Pharmaceutical Bulletin, 2012, 35(6): 812-817. DOI:10.1248/bpb.35.812.
[11] NEBERT D W, RUSSELL D W. Clinical importance of the cytochromes P450[J]. The Lancet, 2002, 360(9340): 1155-1162. DOI:10.1016/S0140-6736(02)11203-7.
[12] CHANEY M E, ROMINE M G, PIONTKIVSKA H, et al. Diversifying selection detected in only a minority of xenobiotic-metabolizing CYP1-3 genes among primate species[J]. Xenobiotica: the Fate of Foreign Compounds in Biological Systems, 2020, 50(12): 1406-1412. DOI:10.1080/00498254.2020.1785580.
[13] KIRISCHIAN N, McARTHUR A G, JESUTHASAN C, et al. Phylogenetic and functional analysis of the vertebrate cytochrome P450 2 family[J]. Journal of Molecular Evolution, 2011, 72(1): 56-71. DOI:10.1007/s00239-010-9402-7.
[14] McMILLAN D M, EL-SHERBENI A A, RICHARDS J, et al. Centrally administered CYP2D inhibitors increase oral tramadol analgesia in rats[J]. Brain Research Bulletin, 2020, 164: 400-406. DOI:10.1016/j.brainresbull.2020.09.001.
[15] 董天崴, 王爽, 杨军, 等. CYP2D6基因多态性与药物基因组学研究的进展[J]. 心血管康复医学杂志, 2014, 23(3): 343-346. DOI:10.3969/j.issn.1008-0074.2014.03.35.
[16] 冯平. CYP2D亚家族基因在脊椎动物中的研究进展[J]. 生物学通报, 2018, 53(2): 6-8. DOI:10.3969/j.issn.0006-3193.2018.02.003.
[17] FENG P, LIU Z J. Complex gene expansion of the CYP2D gene subfamily[J]. Ecology and Evolution, 2018, 8(22): 11022-11030. DOI:10.1002/ece3.4568.
[18] YASUKOCHI Y, SATTA Y. Evolution of the CYP2D gene cluster in humans and four non-human primates[J]. Genes & Genetic Systems, 2011, 86(2): 109-116. DOI:10.1266/ggs.86.109.
[19] WATANABE K P, KAWAI Y K, IKENAKA Y, et al. Avian cytochrome P450 (CYP) 1-3 family genes: isoforms, evolutionary relationships, and mRNA expression in chicken liver[J]. PLoS ONE, 2013, 8(9): e75689. DOI:10.1371/journal.pone.0075689.
[20] MARTIGNONI M, GROOTHUIS G M M, DE KANTER R. Species differences between mouse, rat, dog, monkey and human CYP-mediated drug metabolism, inhibition and induction[J]. Expert Opinion on Drug Metabolism & Toxicology, 2006, 2(6): 875-894. DOI:10.1517/17425255.2.6.875.
[21] KAWAI Y K, ITOU K, YOSHINO T, et al. Hepatic transcriptional profile and tissue distribution of cytochrome P450 1-3 genes in the red-crowned crane Grus japonensis[J]. Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology, 2020, 228: 108643. DOI:10.1016/j.cbpc.2019.108643.
[22] GOPISANKAR M G. CYP2D6 pharmacogenomics[J]. Egyptian Journal of Medical Human Genetics, 2017, 18(4): 309-313. DOI:10.1016/j.ejmhg.2017.03.001.
[23] HE Z X, CHEN X W, YANG Y X, et al. A comparison of non-human primate cytochrome P450 2D members and the implication in drug discovery[J]. Current Drug Metabolism, 2016, 17(6): 520-527. DOI:10.2174/138 9200217666160219114241.
[24] YASUKOCHI Y, SATTA Y. Molecular evolution of the CYP2D subfamily in primates: purifying selection on substrate recognition sites without the frequent or long-tract gene conversion[J]. Genome Biology and Evolution, 2015, 7(4): 1053-1067. DOI:10.1093/gbe/evv056.
[25] ALMEIDA D, MALDONADO E, KHAN I, et al. Whole-genome identification, phylogeny, and evolution of the cytochrome P450 family 2 (CYP2) subfamilies in birds[J]. Genome Biology and Evolution, 2016, 8(4): 1115-1131. DOI:10.1093/gbe/evw041.
[26] LYNCH M, CONERY J S. The evolutionary fate and consequences of duplicate genes[J]. Science, 2000, 290(5494): 1151-1155. DOI:10.1126/science.290.5494.1151.
[27] DANIELSON P B. The cytochrome P450 superfamily: biochemistry, evolution and drug metabolism in humans[J]. Current Drug Metabolism, 2002, 3(6): 561-597. DOI:10.2174/1389200023337054.
[28] GONZALEZ F J, NEBERT D W. Evolution of the P450 gene superfamily: animal-plant “warfare”, molecular drive and human genetic differences in drug oxidation[J]. Trends in Genetics, 1990, 6(6): 182-186. DOI:10.1016/0168-9525(90)90174-5.
[29] THOMAS J H. Rapid birth-death evolution specific to xenobiotic cytochrome P450 genes in vertebrates[J]. PLoS Genetics, 2007, 3(5): e67. DOI:10.1371/journal.pgen.0030067.
[30] TEUFEL A I, JOHNSON M M, LAURENT J M, et al. The many nuanced evolutionary consequences of duplicated genes[J]. Molecular Biology and Evolution, 2019, 36(2): 304-314. DOI:10.1093/molbev/msy210.
[31] FEYEREISEN R. Arthropod CYPomes illustrate the tempo and mode in P450 evolution[J]. Biochimica et Biophysica Acta (BBA): Proteins and Proteomics, 2011, 1814(1): 19-28. DOI:10.1016/j.bbapap.2010.06.012.
[32] WANG X S, LI J, DONG G C, et al. The endogenous substrates of brain CYP2D[J]. European Journal of Pharmacology, 2014, 724: 211-218. DOI:10.1016/j.ejphar.2013.12.025.
[33] TAYLOR C, CROSBY I, YIP V, et al. A review of the important role of CYP2D6 in pharmacogenomics[J]. Genes, 2020, 11(11): 1295. DOI:10.3390/genes11111295.
[34] CAI H, JIANG J, YANG Q, et al. Functional characterization of a first avian cytochrome P450 of the CYP2D subfamily (CYP2D49)[J]. PLoS ONE, 2012, 7(6): e38395. DOI:10.1371/journal.pone.0038395.
[35] TESHIMA K M, INNAN H. The effect of gene conversion on the divergence between duplicated genes[J]. Genetics, 2004, 166(3): 1553-1560. DOI:10.1534/genetics.166.3.1553.
[36] MATSUNAGA E, UMENO M, GONZALEZ F J. The rat P450 IID subfamily: complete sequences of four closely linked genes and evidence that gene conversions maintained sequence homogeneity at the heme-binding region of the cytochrome P450 active site[J]. Journal of Molecular Evolution, 1990, 30(2): 155-169. DOI:10.1007/BF02099942.
[37] MASIMIREMBWA C, PERSSON I, BERTILSSON L, et al. A novel mutant variant of the CYP2D6 gene (CYP2D6*17) common in a black African population: Association with diminished debrisoquine hydroxylase activity[J]. British Journal of Clinical Pharmacology, 1996, 42(6): 713-719. DOI:10.1046/j.1365-2125.1996.00489.x.
[38] BRATTSTEN L B. Enzymic adaptations in leaf-feeding insects to host-plant allelochemicals[J]. Journal of Chemical Ecology, 1988, 14(10): 1919-1939. DOI:10.1007/bf01013486.
[39] INGELMAN-SUNDBERG M. The human genome project and novel aspects of cytochrome P450 research[J]. Toxicology and Applied Pharmacology, 2005, 207(2 sup): 52-56. DOI:10.1016/j.taap.2005.01.030.
[40] WILSON D J, CONSORTIUM C. GenomegaMap: within-species genome-wide dN/dS estimation from over 10,000 genomes[J]. Molecular Biology and Evolution, 2020, 37(8): 2450-2460. DOI:10.1093/molbev/msaa069.
[41] SPIELMAN S J, WILKE C O. The relationship between dN/dS and scaled selection coefficients[J]. Molecular Biology and Evolution, 2015, 32(4): 1097-1108. DOI:10.1093/molbev/msv003.
[1] 张翔, 陈淼, 段建榜, 李瑞歌, 翟婷婷, 王景涛. 煤矸石-铝酸钙制备聚合氯化铝的研究[J]. 广西师范大学学报(自然科学版), 2015, 33(1): 109-114.
[2] 邱建华, 张延武, 张亚涛, 张浩勤, 刘金盾. 表面化学法改性醋酸纤维素微滤膜[J]. 广西师范大学学报(自然科学版), 2011, 29(2): 65-70.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 滕志军, 吕金玲, 郭力文, 许媛媛. 基于改进粒子群算法的无线传感器网络覆盖策略[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 9 -16 .
[2] 程远垚, 宋树祥, 蒋品群. 2.4 GHz CMOS低噪声放大器设计[J]. 广西师范大学学报(自然科学版), 2016, 34(3): 7 -13 .
[3] 马静, 邹艳丽, 李福涛, 莫玉芳. 最大度受限LBA网络模型研究[J]. 广西师范大学学报(自然科学版), 2011, 29(4): 21 -24 .
[4] 岳宏卫, 谢清连, 韦保林, 晋良念, 谢跃雷, 李琦, 周茜. 嵌入Fabry-Perot谐振腔的Tl-2212双晶约瑟夫森结的特性[J]. 广西师范大学学报(自然科学版), 2011, 29(2): 10 -14 .
[5] 许道云, 王晓峰. 一个可控制变迁系统模型[J]. 广西师范大学学报(自然科学版), 2011, 29(2): 138 -144 .
[6] 江凤, 邓启烈, 陈梅, 莫伟彬, 杨永亮. 罗汉果叶黄酮对力竭大鼠组织细胞膜保护作用研究[J]. 广西师范大学学报(自然科学版), 2013, 31(2): 140 -147 .
[7] 陈尤莺, 郑之, 孔祥增, 张胜元. 基于贝叶斯分类器的结肠癌数据分类[J]. 广西师范大学学报(自然科学版), 2011, 29(3): 187 -191 .
[8] 邱文, 叶勇, 周思浩, 闻炳海. 基于晶格Boltzmann方法研究微液滴形变中接触角[J]. 广西师范大学学报(自然科学版), 2019, 37(2): 27 -37 .
[9] 缪志鹏, 王敏. 缅甸白垩纪琥珀中冥蚁一新种(膜翅目:蚁科:冥蚁族)[J]. 广西师范大学学报(自然科学版), 2019, 37(2): 139 -142 .
[10] 李旋菁, 李生强, 汪国海, 施泽攀, 周岐海. 广西猫儿山鸟类多样性和空间分布格局——基于样线法和红外相机技术[J]. 广西师范大学学报(自然科学版), 2019, 37(2): 143 -151 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发