|
广西师范大学学报(自然科学版) ›› 2021, Vol. 39 ›› Issue (5): 58-63.doi: 10.16088/j.issn.1001-6600.2020122201
梁秋芳1,2, 董小燕1,2, 冯平1,2*
LIANG Qiufang1,2, DONG Xiaoyan1,2, FENG Ping1,2*
摘要: CYP2D酶在药物代谢及有毒物质的解毒过程中起重要作用,而认识和了解CYP2D亚家族基因的适应性进化有助于理解CYP2D酶对有毒物质的作用机制。研究表明,CYP2D亚家族基因在进化过程中具有谱系特异性扩张现象。此外,基因复制、基因转换以及选择压力对基因的进化具有一定的影响,但对不同谱系产生的影响程度不同。本文从CYP2D亚家族基因的结构、功能及其进化机制等方面进行综述,以期为理解CYP2D亚家族基因的适应性进化提供理论依据。
中图分类号:
[1] FINNIGAN J D, YOUNG C, COOK D J, et al. Cytochromes P450 (P450s): A review of the class system with a focus on prokaryotic P450s[J]. Advances in Protein Chemistry and Structural Biology, 2020, 122: 289-320. DOI:10.1016/bs.apcsb.2020.06.005. [2] SEZUTSU H, LE GOFF G, FEYEREISEN R. Origins of P450 diversity[J]. Philosophical Transactions of the Royal Society Series B: Biological Sciences, 2013, 368(1612): 20120428. DOI:10.1098/rstb.2012.0428. [3] GUENGERICH F P. Intersection of the roles of cytochrome P450 enzymes with xenobiotic and endogenous substrates: Relevance to toxicity and drug interactions[J]. Chemical Research in Toxicology, 2017, 30(1): 2-12. DOI:10.1021/acs.chemrestox.6b00226. [4] UEHARA S, UNO Y, HAGIHIRA Y, et al. Marmoset cytochrome P450 2D8 in livers and small intestines metabolizes typical human P450 2D6 substrates, metoprolol, bufuralol and dextromethorphan[J]. Xenobiotica: the Fate of Foreign Compounds in Biological Systems, 2015, 45(9): 766-772. DOI:10.3109/00498254.2015.1019595. [5] KITANOVIC S, ORR T J, SPALINK D, et al. Role of cytochrome P450 2B sequence variation and gene copy number in facilitating dietary specialization in mammalian herbivores[J]. Molecular Ecology, 2018, 27(3): 723-736. DOI:10.1111/mec.14480. [6] MALENKE J R, MAGNANOU E, THOMAS K, et al. Cytochrome P450 2B diversity and dietary novelty in the herbivorous, desert woodrat (Neotoma lepida)[J]. PLoS ONE, 2012, 7(8): e41510. DOI:10.1371/journal.pone.0041510. [7] NEBERT D W, ADESNIK M, COON M J, et al. The P450 gene superfamily: recommended nomenclature[J]. DNA, 1987, 6(1): 1-11. DOI:10.1089/dna.1987.6.1. [8] CHANEY M E, PIONTKIVSKA H, TOSI A J. Retained duplications and deletions of CYP2C genes among primates[J]. Molecular Phylogenetics and Evolution, 2018, 125: 204-212. DOI:10.1016/j.ympev.2018.03.037. [9] KONSTANDI M, JOHNSON E O, LANG M A. Consequences of psychophysiological stress on cytochrome P450-catalyzed drug metabolism[J]. Neuroscience and Biobehavioral Reviews, 2014, 45: 149-167. DOI:10.1016/j.neubiorev.2014.05.011. [10] GOTOH O. Evolution of cytochrome P450 genes from the viewpoint of genome informatics[J]. Biological and Pharmaceutical Bulletin, 2012, 35(6): 812-817. DOI:10.1248/bpb.35.812. [11] NEBERT D W, RUSSELL D W. Clinical importance of the cytochromes P450[J]. The Lancet, 2002, 360(9340): 1155-1162. DOI:10.1016/S0140-6736(02)11203-7. [12] CHANEY M E, ROMINE M G, PIONTKIVSKA H, et al. Diversifying selection detected in only a minority of xenobiotic-metabolizing CYP1-3 genes among primate species[J]. Xenobiotica: the Fate of Foreign Compounds in Biological Systems, 2020, 50(12): 1406-1412. DOI:10.1080/00498254.2020.1785580. [13] KIRISCHIAN N, McARTHUR A G, JESUTHASAN C, et al. Phylogenetic and functional analysis of the vertebrate cytochrome P450 2 family[J]. Journal of Molecular Evolution, 2011, 72(1): 56-71. DOI:10.1007/s00239-010-9402-7. [14] McMILLAN D M, EL-SHERBENI A A, RICHARDS J, et al. Centrally administered CYP2D inhibitors increase oral tramadol analgesia in rats[J]. Brain Research Bulletin, 2020, 164: 400-406. DOI:10.1016/j.brainresbull.2020.09.001. [15] 董天崴, 王爽, 杨军, 等. CYP2D6基因多态性与药物基因组学研究的进展[J]. 心血管康复医学杂志, 2014, 23(3): 343-346. DOI:10.3969/j.issn.1008-0074.2014.03.35. [16] 冯平. CYP2D亚家族基因在脊椎动物中的研究进展[J]. 生物学通报, 2018, 53(2): 6-8. DOI:10.3969/j.issn.0006-3193.2018.02.003. [17] FENG P, LIU Z J. Complex gene expansion of the CYP2D gene subfamily[J]. Ecology and Evolution, 2018, 8(22): 11022-11030. DOI:10.1002/ece3.4568. [18] YASUKOCHI Y, SATTA Y. Evolution of the CYP2D gene cluster in humans and four non-human primates[J]. Genes & Genetic Systems, 2011, 86(2): 109-116. DOI:10.1266/ggs.86.109. [19] WATANABE K P, KAWAI Y K, IKENAKA Y, et al. Avian cytochrome P450 (CYP) 1-3 family genes: isoforms, evolutionary relationships, and mRNA expression in chicken liver[J]. PLoS ONE, 2013, 8(9): e75689. DOI:10.1371/journal.pone.0075689. [20] MARTIGNONI M, GROOTHUIS G M M, DE KANTER R. Species differences between mouse, rat, dog, monkey and human CYP-mediated drug metabolism, inhibition and induction[J]. Expert Opinion on Drug Metabolism & Toxicology, 2006, 2(6): 875-894. DOI:10.1517/17425255.2.6.875. [21] KAWAI Y K, ITOU K, YOSHINO T, et al. Hepatic transcriptional profile and tissue distribution of cytochrome P450 1-3 genes in the red-crowned crane Grus japonensis[J]. Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology, 2020, 228: 108643. DOI:10.1016/j.cbpc.2019.108643. [22] GOPISANKAR M G. CYP2D6 pharmacogenomics[J]. Egyptian Journal of Medical Human Genetics, 2017, 18(4): 309-313. DOI:10.1016/j.ejmhg.2017.03.001. [23] HE Z X, CHEN X W, YANG Y X, et al. A comparison of non-human primate cytochrome P450 2D members and the implication in drug discovery[J]. Current Drug Metabolism, 2016, 17(6): 520-527. DOI:10.2174/138 9200217666160219114241. [24] YASUKOCHI Y, SATTA Y. Molecular evolution of the CYP2D subfamily in primates: purifying selection on substrate recognition sites without the frequent or long-tract gene conversion[J]. Genome Biology and Evolution, 2015, 7(4): 1053-1067. DOI:10.1093/gbe/evv056. [25] ALMEIDA D, MALDONADO E, KHAN I, et al. Whole-genome identification, phylogeny, and evolution of the cytochrome P450 family 2 (CYP2) subfamilies in birds[J]. Genome Biology and Evolution, 2016, 8(4): 1115-1131. DOI:10.1093/gbe/evw041. [26] LYNCH M, CONERY J S. The evolutionary fate and consequences of duplicate genes[J]. Science, 2000, 290(5494): 1151-1155. DOI:10.1126/science.290.5494.1151. [27] DANIELSON P B. The cytochrome P450 superfamily: biochemistry, evolution and drug metabolism in humans[J]. Current Drug Metabolism, 2002, 3(6): 561-597. DOI:10.2174/1389200023337054. [28] GONZALEZ F J, NEBERT D W. Evolution of the P450 gene superfamily: animal-plant “warfare”, molecular drive and human genetic differences in drug oxidation[J]. Trends in Genetics, 1990, 6(6): 182-186. DOI:10.1016/0168-9525(90)90174-5. [29] THOMAS J H. Rapid birth-death evolution specific to xenobiotic cytochrome P450 genes in vertebrates[J]. PLoS Genetics, 2007, 3(5): e67. DOI:10.1371/journal.pgen.0030067. [30] TEUFEL A I, JOHNSON M M, LAURENT J M, et al. The many nuanced evolutionary consequences of duplicated genes[J]. Molecular Biology and Evolution, 2019, 36(2): 304-314. DOI:10.1093/molbev/msy210. [31] FEYEREISEN R. Arthropod CYPomes illustrate the tempo and mode in P450 evolution[J]. Biochimica et Biophysica Acta (BBA): Proteins and Proteomics, 2011, 1814(1): 19-28. DOI:10.1016/j.bbapap.2010.06.012. [32] WANG X S, LI J, DONG G C, et al. The endogenous substrates of brain CYP2D[J]. European Journal of Pharmacology, 2014, 724: 211-218. DOI:10.1016/j.ejphar.2013.12.025. [33] TAYLOR C, CROSBY I, YIP V, et al. A review of the important role of CYP2D6 in pharmacogenomics[J]. Genes, 2020, 11(11): 1295. DOI:10.3390/genes11111295. [34] CAI H, JIANG J, YANG Q, et al. Functional characterization of a first avian cytochrome P450 of the CYP2D subfamily (CYP2D49)[J]. PLoS ONE, 2012, 7(6): e38395. DOI:10.1371/journal.pone.0038395. [35] TESHIMA K M, INNAN H. The effect of gene conversion on the divergence between duplicated genes[J]. Genetics, 2004, 166(3): 1553-1560. DOI:10.1534/genetics.166.3.1553. [36] MATSUNAGA E, UMENO M, GONZALEZ F J. The rat P450 IID subfamily: complete sequences of four closely linked genes and evidence that gene conversions maintained sequence homogeneity at the heme-binding region of the cytochrome P450 active site[J]. Journal of Molecular Evolution, 1990, 30(2): 155-169. DOI:10.1007/BF02099942. [37] MASIMIREMBWA C, PERSSON I, BERTILSSON L, et al. A novel mutant variant of the CYP2D6 gene (CYP2D6*17) common in a black African population: Association with diminished debrisoquine hydroxylase activity[J]. British Journal of Clinical Pharmacology, 1996, 42(6): 713-719. DOI:10.1046/j.1365-2125.1996.00489.x. [38] BRATTSTEN L B. Enzymic adaptations in leaf-feeding insects to host-plant allelochemicals[J]. Journal of Chemical Ecology, 1988, 14(10): 1919-1939. DOI:10.1007/bf01013486. [39] INGELMAN-SUNDBERG M. The human genome project and novel aspects of cytochrome P450 research[J]. Toxicology and Applied Pharmacology, 2005, 207(2 sup): 52-56. DOI:10.1016/j.taap.2005.01.030. [40] WILSON D J, CONSORTIUM C. GenomegaMap: within-species genome-wide dN/dS estimation from over 10,000 genomes[J]. Molecular Biology and Evolution, 2020, 37(8): 2450-2460. DOI:10.1093/molbev/msaa069. [41] SPIELMAN S J, WILKE C O. The relationship between dN/dS and scaled selection coefficients[J]. Molecular Biology and Evolution, 2015, 32(4): 1097-1108. DOI:10.1093/molbev/msv003. |
[1] | 张翔, 陈淼, 段建榜, 李瑞歌, 翟婷婷, 王景涛. 煤矸石-铝酸钙制备聚合氯化铝的研究[J]. 广西师范大学学报(自然科学版), 2015, 33(1): 109-114. |
[2] | 邱建华, 张延武, 张亚涛, 张浩勤, 刘金盾. 表面化学法改性醋酸纤维素微滤膜[J]. 广西师范大学学报(自然科学版), 2011, 29(2): 65-70. |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |