|
广西师范大学学报(自然科学版) ›› 2021, Vol. 39 ›› Issue (2): 119-124.doi: 10.16088/j.issn.1001-6600.2019082802
张晓磊1*, 赵伟2, 王芳贵1
ZHANG Xiaolei1*, ZHAO Wei2, WANG Fanggui1
摘要: 引进并研究φ-平坦余挠理论, 证明了该余挠理论是完全余挠理论。设R是φ-环, 则φ-平坦余挠理论与经典平坦余挠理论相等当且仅当R是整环。作为应用, 给出了非诣零凝聚环和φ-VN正则环的新刻画和φ-平坦模的包类性质;证明了每个R-模都有一个满的φ-平坦包当且仅当R是非诣零凝聚环,并且φ-平坦模关于子模封闭。
中图分类号:
[1] BADAWI A.On divided commutative rings[J].Communications in Algebra,1999,27(3):1465-1474.DOI: 10.1080/00927879908826507. [2] BADAWI A.On φ-pseudo-valuation rings II[J].Houston Journal of Mathematics,2000,26(3):473-480. [3] BADAWI A.On φ-chained rings and φ-pseudo-valuation rings[J].Houston Journal of Mathematics,2001,27(4):725-736. [4] BADAWI A.On divided rings and φ-pseudo-valuation rings[J].International Journal of Commutative Rings,2002,1(2):51-60. [5] BADAWI A,LUCAS T.On φ-Mori rings[J].Houston Journal of Mathematics,2006,32(1):1-31. [6] ANDERSON D F,BADAWI A.On φ-Prüfer rings and φ-Bézout rings[J].Houston Journal of Mathematics,2004,30(2):331-343. [7] ANDERSON D F,BADAWI A.On φ-Dedekind rings and φ-Krull rings[J].Houston Journal of Mathematics,2005,31(4):1007-1022. [8] BADAWI A.On nonnil-Noetherian rings[J].Communications in Algebra,2003,31(4):1669-1677.DOI: 10.1081/AGB-120018502. [9] ZHAO W,WANG F G,TANG G H.On φ-von Neumann regular rings[J].Journal of Korean Mathematical Society,2013,50(1):219-229.DOI: 10.4134/JKMS.2013.50.1.219. [10] BACEM K, ALI B. Nonnil-coherent rings[J]. Beiträge zur Algebra und Geometrie/Contributions to Algebra and Geometry,2016,57(2):297-305.DOI: 10.1007/s13366-015-0260-8. [11] BICAN L,BASHIR R E,ENOCHS E.All modules have flat covers[J].Bulletin of the London Mathematical Society,2001,33(4):385-390.DOI: 10.1017/S0024609301008104. [12] STENSTRÖM B. Rings of quotients: an introduction to methods of ring theory[M]. Heidelberg: Springer-Verlag,1975:136-159. [13] 张晓磊. w-算子的盖包[J].四川师范大学学报(自然科学版),2019,42(3):382-386.DOI: 10.3969/j.issn.1001-8395.2019.03.016. [14] HOLM H,JØRGENSEN P.Covers,precovers,and purity[J].Illinois Journal of Mathematics,2008,52(2):691-703.DOI: 10.1215/ijm/1248355359. [15] 梁春梅,王芳贵,吴小英.分次单内射模及其刻画[J].广西师范大学学报(自然科学版),2019,37(2):113-120.DOI:10.16088/j.issn.1001-6600.2019.02.013. [16] 刘天莉莲,王芳贵,高增辉.FI-gr-内射模[J].广西师范大学学报(自然科学版),2019,37(1):155-164.DOI:10.16088/j.issn.1001-6600.2019.01.018. [17] 赵伟, 张晓磊. 非诣零内射模[J]. 四川师范大学学报(自然科学版), 2019,42(6):808-815.DOI: 10.3969/j.issn.1001-8395.2019.06.016. [18] 赵伟.NP-环上的同调理论及其应用[D].成都:四川师范大学,2013. [19] ENOCHS E E,JENDA O M G.Relative homological algebra[M]//De Gruyter Expositions in Mathematics:Volume 30.Berlin:Walter De Gruyter,2000:105-166. [20] DING N Q,MAO L X.The cotorsion dimension of modules and rings[M].Boca Raton,FL:Chapman &Hall/CRC,2006:57-73. |
No related articles found! |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |