广西师范大学学报(自然科学版) ›› 2021, Vol. 39 ›› Issue (2): 1-12.doi: 10.16088/j.issn.1001-6600.2020082603

• CCIR2020 •    下一篇

神经信息检索模型建模因素综述

杨州1,2, 范意兴3, 朱小飞1*, 郭嘉丰3, 王越2   

  1. 1.重庆理工大学 计算机科学与工程学院, 重庆 400054;
    2.搜狐公司智能媒体研发中心, 北京 100190;
    3.中国科学院计算技术研究所 网络数据科学与技术重点实验室, 北京 100190
  • 收稿日期:2020-08-26 修回日期:2020-09-22 出版日期:2021-03-25 发布日期:2021-04-15
  • 通讯作者: 朱小飞(1979—),男,江苏扬州人,重庆理工大学教授,博士。E-mail:zxf@cqut.edu.cn
  • 基金资助:
    国家自然科学基金(61722211,61502065);重庆市基础科学与前沿技术研究项目(cstc2017jcyjBX0059,cstc2017jcyjAX0339);重庆市教委语言文字科研项目重点项目(yyk20103)

Survey on Modeling Factors of Neural Information Retrieval Model

YANG Zhou1,2, FAN Yixing3, ZHU Xiaofei1*, GUO Jiafeng3, WANG Yue2   

  1. 1. School of Computer Science and Engineering, Chongqing University of Technology, Chongqing 400054, China;
    2. Intelligent Media R & D Center SOHU, Beijing 100190, China;
    3. CAS Key Lab of Network Data Science and Technology, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
  • Received:2020-08-26 Revised:2020-09-22 Online:2021-03-25 Published:2021-04-15

摘要: 信息检索模型被广泛运用于搜索引擎中,且在工业领域被广泛应用。信息检索任务中,模型对信号量的侧重建模导致模型指标差异巨大。目前模型大部分基于以下部分或全部信息建模:精确信号量、相似信号量、信号量区分度、查询词权重、临近量、文本结构信息、不同分布假设。本文介绍各个建模因素的具体含义,并通过引用相关实验例证该因素对于建模起到的积极作用。基于以上实验及分析,最后对信息检索模型的未来发展及趋势作进一步讨论和分析。

关键词: 信息检索, 深度学习, 卷积神经网络, 循环神经网络, 综述

Abstract: Information retrieval models are widely used in search engines. In the task of information retrieval, these models focuses on the different semaphores, which leads to great differences in model performance. At present, most models are based on part or all of the following information: exact signals, similar signals, signals differentiation, query word weight, proximity, text structure, and different distribution assumptions. This paper introduces the specific meaning of each modeling factor, and exemplifies the positive effect of this factor on modeling through relevant experiments. Based on the above experiments and analysis, this paper finally discusses and analyzes the future development and the trend of information retrieval model.

Key words: information retrieval, deep learning, convolutional neural network, recurrent neural network, survey

中图分类号: 

  • TP391.3
[1] YANG Y,YIH S W,MEEK C.WikiQA:a challenge dataset for open-domain question answering[C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Stroudburg,PA:ACL,2015:2013-2018.
[2] RAJPURKAR P,ZHANG J,LOPYREV K,et al.SQuAD:100,000+ questions for machine comprehension of text[C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing.Stroudburg,PA:ACL, 2016:2383-2392.
[3] YANG L,QIU M,GOTTIPATI S,et al.CQARank:jointly model topics and expertise in community question answering[C]//Proceedings of the 22nd ACM international conference on Conference on information &knowledge management.New York:ACM,2013:99-108.
[4] LECUN Y,BENGIO Y,HINTON G.Deep learning[J]. Nature,2015,521(7553):436-444.
[5] COLLOBERT R,WESTON J,BOTTOU L,et al.Natural language processing (almost) from scratch[J]. Journal of Machine Learning Research, 2011,12(1):2493-2537.
[6] VINYALS O,KAISER L,KOO T,et al.Grammar as a foreign language[EB/OL].(2015-06-09)[2020-08-26].https://arxiv.org/abs/1412.7449.
[7] LI H,XU J.Semantic matching in search[J]. Foundations and Trends in Information Retrieval,2014,7(5):343-469.
[8] MIKOLOV T,CHEN K,CORRADO G,et al.Efficient estimation of word representations in vector space[EB/OL].(2013-09-07)[2020-08-26].https://arxiv.org/abs/1301.3781.
[9] PANG L,LAN Y Y, GUO J F,et al.A deep investigation of deep IR models[EB/OL].(2017-07-24)[2020-08-26].https://arxiv.org/abs/1707.07700.
[10] FANG H,TAO T,ZHAI C X.Diagnostic evaluation of information retrieval models[J]. ACM Transactions on Information Systems,2011:7.
[11] 庞亮,兰艳艳,徐君,等.深度文本匹配综述[J].计算机学报,2017,40(4): 985-1003.
[12] CHUKLIN A,MARKOV I,RIJKE M D.Click models for Web search[J]. Synthesis Lectures on Information Concepts Retrieval &Services,2015,7(3):1-115.
[13] LIU Y Q,XIE X H,WANG C,et al.Time-aware click model[J]. ACM Transactions on Information Systems,2016,35(3):16.
[14] ROBERTSON S E,WALKER S.Some simple effective approximations to the 2-poisson model for probabilistic weighted retrieval[C]//Proceedings of the 17th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.Berlin:Springer-Verlang,1994:232-241.
[15] ZHAI C,LAFFERTY J.A study of smoothing methods for language models applied to Ad Hoc information retrieval[C]//Proceedings of the 24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.New York:ACM,2001:333-342.
[16] HU B T, LU Z D, LI H,et al.Convolutional neural network architectures for matching natural language sentences[EB/OL].(2015-03-11)[2020-08-26].https://arxiv.org/abs/1503.03244v1.
[17] HUANG P S,HE X D,GAO J F,et al. Learning deep structured semantic models for web search using clickthrough data[C]//Proceedings of the 22nd ACM International Conference on Information &Knowledge Management. New York: ACM,2013:2333-2338.
[18] SHEN Y L,HE X D, GAO J F,et al. Learning semantic representations using convolutional neural networks for web search[C]//Proceedings of the 23rd International Conference on World Wide Web.New York:ACM,2014:373-374.
[19] GUO J F,FAN Y X,AI Q Y,et al.A deep relevance matching model for ad-hoc retrieval[C]//Proceedings of the 25th ACM International on Conference on Information and Knowledge Management.New York:ACM,2016:55-64.
[20] FAN Y X,GUO J F, LAN Y Y,et al. Modeling diverse relevance patterns in Ad-hoc retrieval[C]//The 41st International ACM SIGIR Conference on Research &Development in Information Retrieval.New York:ACM,2018:375-384.
[21] MITRA B,DIAZ F,CRASWELL N.Learning to match using local and distributed representations of text for web search [EB/OL].(2016-10-26)[2020-08-26].https://arxiv.org/abs/1610.08136.
[22] GRAVES A.Offline handwriting recognition with multidimensional recurrent neural networks[M]//MÄRGNER V,EL ABED H.Guide to OCR for Arabic Scripts.London:Springer,2012:297-313.
[23] CHO K,VAN MERRIENBOER B, GULCEHRE C,et al.Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing.Stroudburg,PA:ACL,2014:1724-1734.
[24] WAN S X,LAN Y Y,XU J,et al.Match-SRNN:modeling the recursive matching structure with spatial RNN[J].Computers &Graphics,2016,28(5):731-745.
[25] TAO T,ZHAI C X.An exploration of proximity measures in information retrieval[C]//Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.New York:ACM,2007:295-302.
[26] PANG L,LAN Y Y,GUO J F,et al.Deeprank:a new deep architecture for relevance ranking in information retrieval[C]//Proceedings of the 2017 ACM on Conference on Information and Knowledge Management.New York: ACM,2017:257-266.
[27] PANG L,LAN Y Y,GUO J F,et al.Text matching as image recognition[C]//Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence.Palo Alto,CA:AAAI Press,2016:2793-2799.
[28] LECUN Y,BOTTOU L.Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE,1998,86(11):2278-2324.
[29] LEVIN E.A recurrent neural network:limitations and training[J]. Neural Networks,1990,3(6):641-650.
[30] DATAR M,Immorlica N,Indyk P,et al.Locality sensitive hashing scheme based on p-stable distributions[C]//Proceedings of the Twentieth Annual Symposium on Computational Geometry.New York: ACM,2004:253-262.
[31] DAI Z Y,XIONG C Y,CALLAN J,et al.Convolutional neural networks for soft-matching N-grams in Ad-hoc search[C]//Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining.New York:ACM,2018:126-134.
[32] XIONG C Y,DAI Z Y,CALLAN J,et al.End-to-end neural ad-hoc ranking with kernel pooling[C]//Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval.New York:ACM,2017:55-64.
[33] HUI K,YATES A,BERBERICH K,et al.PACRR:a position-aware neural IR model for relevance atching[C]//Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing.Stroudburg,PA:ACL,2017:1049-1058.
[34] PONTES J,JOÃO D,CARVALHO R A D,et al.Information retrieval to knowledge retrieval:reflections and proposals[J].Perspectives em Ciência da Informaco,2013,18(4):2-17.
[35] GABRILOVICH E,MARKOVITCH S.Wikipedia-based semantic interpretation for natural language processing[J].Journal of Artificial Intelligence Research,2009,34:443-498.
[36] WU H C,LUK R W P,WONG K F,et al.A retrospective study of a hybrid document-context based retrieval model[J].Information Processing &Management,2007 43(5): 1308-1331.
[1] 邓文轩, 杨航, 靳婷. 基于注意力机制的图像分类降维方法[J]. 广西师范大学学报(自然科学版), 2021, 39(2): 32-40.
[2] 薛涛, 丘森辉, 陆豪, 秦兴盛. 基于经验模态分解和多分支LSTM网络汇率预测[J]. 广西师范大学学报(自然科学版), 2021, 39(2): 41-50.
[3] 唐熔钗, 伍锡如. 基于改进YOLO-V3网络的百香果实时检测[J]. 广西师范大学学报(自然科学版), 2020, 38(6): 32-39.
[4] 张明宇, 赵猛, 蔡夫鸿, 梁钰, 王鑫红. 基于深度学习的波浪能发电功率预测[J]. 广西师范大学学报(自然科学版), 2020, 38(3): 25-32.
[5] 葛奕飞, 郑彦斌. 带有纠删或纠错性质的隐私保护信息检索方案[J]. 广西师范大学学报(自然科学版), 2020, 38(3): 33-44.
[6] 李维勇, 柳斌, 张伟, 陈云芳. 一种基于深度学习的中文生成式自动摘要方法[J]. 广西师范大学学报(自然科学版), 2020, 38(2): 51-63.
[7] 严浩, 许洪波, 沈英汉, 程学旗. 开放式中文事件检测研究[J]. 广西师范大学学报(自然科学版), 2020, 38(2): 64-71.
[8] 刘英璇, 伍锡如, 雪刚刚. 基于深度学习的道路交通标志多目标实时检测[J]. 广西师范大学学报(自然科学版), 2020, 38(2): 96-106.
[9] 范瑞,蒋品群,曾上游,夏海英,廖志贤,李鹏. 多尺度并行融合的轻量级卷积神经网络设计[J]. 广西师范大学学报(自然科学版), 2019, 37(3): 50-59.
[10] 张金磊, 罗玉玲, 付强. 基于门控循环单元神经网络的金融时间序列预测[J]. 广西师范大学学报(自然科学版), 2019, 37(2): 82-89.
[11] 黄丽明, 陈维政, 闫宏飞, 陈翀. 基于循环神经网络和深度学习的股票预测方法[J]. 广西师范大学学报(自然科学版), 2019, 37(1): 13-22.
[12] 武文雅, 陈钰枫, 徐金安, 张玉洁. 基于高层语义注意力机制的中文实体关系抽取[J]. 广西师范大学学报(自然科学版), 2019, 37(1): 32-41.
[13] 岳天驰, 张绍武, 杨亮, 林鸿飞, 于凯. 基于两阶段注意力机制的立场检测方法[J]. 广西师范大学学报(自然科学版), 2019, 37(1): 42-49.
[14] 余传明, 李浩男, 安璐. 基于多任务深度学习的文本情感原因分析[J]. 广西师范大学学报(自然科学版), 2019, 37(1): 50-61.
[15] 林原, 刘海峰, 林鸿飞, 许侃. 基于损失函数融合的组排序学习方法[J]. 广西师范大学学报(自然科学版), 2019, 37(1): 62-70.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 胡锦铭, 韦笃取. 分数阶永磁同步电机的广义同步研究[J]. 广西师范大学学报(自然科学版), 2020, 38(6): 14 -20 .
[2] 朱勇建, 罗坚, 秦运柏, 秦国峰, 唐楚柳. 基于光度立体和级数展开法的金属表面缺陷检测方法[J]. 广西师范大学学报(自然科学版), 2020, 38(6): 21 -31 .
[3] 杨丽婷, 刘学聪, 范鹏来, 周岐海. 中国非人灵长类声音通讯研究进展[J]. 广西师范大学学报(自然科学版), 2021, 39(1): 1 -9 .
[4] 宾石玉, 廖芳, 杜雪松, 许艺兰, 王鑫, 武霞, 林勇. 罗非鱼耐寒性能研究进展[J]. 广西师范大学学报(自然科学版), 2021, 39(1): 10 -16 .
[5] 刘静, 边迅. 直翅目昆虫线粒体基因组的特征及应用[J]. 广西师范大学学报(自然科学版), 2021, 39(1): 17 -28 .
[6] 李兴康, 钟恩主, 崔春艳, 周佳, 李小平, 管振华. 西黑冠长臂猿滇西亚种鸣叫行为监测[J]. 广西师范大学学报(自然科学版), 2021, 39(1): 29 -37 .
[7] 和鑫明, 夏万才, 巴桑, 龙晓斌, 赖建东, 杨婵, 王凡, 黎大勇. 滇金丝猴主雄应对配偶雌性数量的理毛策略[J]. 广西师范大学学报(自然科学版), 2021, 39(1): 38 -44 .
[8] 付文, 任宝平, 林建忠, 栾科, 王朋程, 王宾, 黎大勇, 周岐海. 济源太行山猕猴种群数量和保护现状[J]. 广西师范大学学报(自然科学版), 2021, 39(1): 45 -52 .
[9] 郑景金, 梁霁鹏, 张克处, 黄爱面, 陆倩, 李友邦, 黄中豪. 基于木本植物优势度的白头叶猴食物选择研究[J]. 广西师范大学学报(自然科学版), 2021, 39(1): 53 -64 .
[10] 杨婵, 万雅琼, 黄小富, 袁旭东, 周洪艳, 方浩存, 黎大勇, 李佳琦. 基于红外相机技术的小麂(Muntiacus reevesi)活动节律[J]. 广西师范大学学报(自然科学版), 2021, 39(1): 65 -70 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发