广西师范大学学报(自然科学版) ›› 2020, Vol. 38 ›› Issue (4): 82-91.doi: 10.16088/j.issn.1001-6600.2020.04.010

• • 上一篇    下一篇

非线性偏积分微分方程紧隐显BDF方法的误差分析

兰海峰, 肖飞雁*, 张根根, 朱瑞   

  1. 广西师范大学数学与统计学院, 广西桂林541006
  • 收稿日期:2019-03-25 发布日期:2020-07-13
  • 通讯作者: 肖飞雁(1973—), 女(土家族), 广西师范大学教授, 博士。E-mail: fyxiao@mailbox.gxnu.edu.cn
  • 基金资助:
    国家自然科学基金(11701110); 广西学位与研究生教育改革课题(JGY2017019); 广西研究生教育创新计划(YCSW2019087)

Error Analysis of Compact Implicit-Explicit BDF Method forNonlinear Partial Integral Differential Equations

LAN Haifeng, XIAO Feiyan*, ZHANG Gengen, ZHU Rui   

  1. College of Mathematics and Statistics, Guangxi Normal University, Guilin Guangxi 541006, China
  • Received:2019-03-25 Published:2020-07-13

摘要: 本文研究一类非线性抛物型偏积分微分方程数值格式的误差分析,其格式在空间方向采用紧致差分方法,时间方向采用隐显BDF方法,积分项利用梯形数值求积公式进行求解,给出了算法的收敛阶O(τ2+h4);通过数值算例验证了数值格式的准确性和有效性。

关键词: 非线性偏积分微分方程, 隐显BDF方法, 紧致差分方法, 误差分析

Abstract: In this paper, the compact implicit-explicit BDF method are proposed to solve nonlinear partial integral differential equations, i.e. the equation is discretized by the implicit-explicit BDF method in time and compact finite difference approximations in space. Then, the global convergence of the scheme is proved rigorously with convergence order O(τ2+h4). Finally, numerical examples are presented to verify the accuracy and validity of the numerical scheme.

Key words: nonlinear partial integro-differential equation, implicit-explicit BDF, compact difference scheme, error analysis

中图分类号: 

  • O241.82
[1] AVAZZADEH Z, RIZI Z B, GHAINI F M M, et al. A numerical solution of nonlinear parabolic-type Volterra partial integro-differential equations using radial basis functions[J].Engineering Analysis with Boundary Elements,2012,36(5): 881-893. DOI:10.1016/j.enganabound.2011.09.013.
[2] DEHGHAN M, SHOKRI A. A numerical method for solution of the two-dimensional sine-Gordon equation using the radial basis functions[J].Mathematics and Computers in Simulation, 2008, 79(3): 700-715.DOI:10.1016/j.matcom.2008.04.018.
[3] DEHGHAN M, SHOKRI A. A numerical method for two-dimensional Schrödinger equation using collocation and radial basis functions[J].Computers and Mathematics with Applications, 2007, 54(1): 136-146. DOI:10.1016/j.camwa.2007.01.038.
[4] DEHGHAN M, SHOKRI A. Numerical solution of the nonlinear Klein-Gordon equation using radial basis functions[J].Journal of Computational and Applied Mathematics, 2009, 230(2): 400-410. DOI: 10.1016/j.cam.2008.12.011.
[5] SHU C, DING H, ZHAO N. Numerical comparison of least square-based finite-difference (LSFD) and radial basis function-based finite-difference (RBFFD) methods[J].Computers & Mathematics with Applications,2006,51(8): 1297-1310.DOI: 10.1016/j.camwa.2006.04.015.
[6] TANG T. A finite difference scheme for partial integro-differential equations with a weakly singular kernel[J].Applied Numerical Mathematics, 1993, 11(4): 309-319. DOI:10.1016/0168-9274(93)90012-g.
[7] FAKHAR-IZADI F, DEHGHAN M. Fully spectral collocation method for nonlinear parabolic partial integro-differential equations[J]. Applied Numerical Mathematics, 2018, 123: 99-120. DOI:10.1016/j.apnum.2017.08.007.
[8] FUJIWARA H. High-accurate numerical method for integral equations of the first kind under multiple-precision arithmetic[J]. Theoretical and Applied Mechanics Japan, 2003, 52: 193-203. DOI:10.11345/nctam.52.193.
[9] JIANG Y J. On spectral methods for Volterra-type integro-differential equations[J].Journal of Computational and Applied Mathematics, 2009, 230(2): 333-340. DOI:10.1016/j.cam.2008.12.001.
[10]TANG T. A note on collocation methods for Volterra integro-differential equations with weakly singular kernels[J]. IMA Journal of Numerical Analysis,1993, 13(1): 93-99. DOI:10.1093/imanum/13.1.93.
[11]WEI Y, CHEN Y. Convergence analysis of the spectral methods for weakly singular Volterra integro-differential equations with smooth solutions[J]. Advances in Applied Mathematics and Mechanics, 2012, 4(1): 1-20. DOI:10.4208/aamm.10-m1055.
[12]BAKAEV N Y. On the Galerkin finite element approximations to multi-dimensional differential and integro-differential parabolic equations[J]. BIT Numerical Mathematics, 1997, 37(2): 237-255. DOI:10.1007/bf02510212.
[13]CHEN C, THOMéE V, WAHLBIN L B. Finite element approximation of a parabolic integro-differential equation with a weaklysingular kernel[J].Mathematics of Computation, 1992, 58(198): 587-602. DOI:10.1090/S0025-5718-1992-1122059-2.
[14]LI W, DA X. Finite central difference/finite element approximations for parabolic integro-differential equations[J].Computing, 2010, 90(3/4): 89-111. DOI:10.1007/s00607-010-0105-0.
[15]MA J. Finite element methods for partial Volterra integro-differential equations on two-dimensional unbounded spatial domains[J]. Applied Mathematics and Computation, 2007, 186(1): 598-609. DOI:10.1016/j.amc.2006.08.004.
[16]THOMÉE V, ZHANG N. Error estimates for semidiscrete finite element methods for parabolic integro-differential equations[J]. Mathematics of Computation, 1989, 53(187): 121-139. DOI:10.1090/s0025-5718-1989-0969493-9.
[17]SHAMPINE L F, SOMMEIJER B P, VERWER J G. IRKC: An IMEX solver for stiff diffusion-reaction PDEs[J].Journal of Computational and Applied Mathematics, 2006, 196(2): 485-497. DOI:10.1016/j.cam.2005.09.014.
[18]HUNDSDORFER W, RUUTH S J. IMEX extensions of linear multistep methods with general monotonicity and boundedness properties[J].Journal of Computational Physics, 2007, 225(2): 2016-2042. DOI:10.1016/j.jcp.2007.03.003.
[19]XIAO A, ZHANG G, ZHOU J. Implicit-explicit time discretization coupled with finite element methods for delayed predator-prey competition reaction-diffusion system[J].Computers & Mathematics with Applications,2016,71(10): 2106-2123.DOI: 10.1016/j.camwa.2016.04.003.
[20]ZHANG G, XIAO A. Stability and convergence analysis of implicit-explicit one-leg methods for stiff delay differential equations[J]. International Journal of Computer Mathematics, 2016, 93(11): 1964-1983. DOI:10.1080/00207160.2015.1080359.
[21]ZHANG G, XIAO A, ZHOU J. Implicit-explicit multistep finite-element methods for nonlinear convection-diffusion-reaction equations with time delay[J].International Journal of Computer Mathematics,2018,95(12): 2496-2510.DOI: 10.1080/00207160.2017.1408802.
[22]LI L, ZHOU B, CHEN X, et. al. Convergence and stability of compact finite difference method for nonlinear time fractional reaction-diffusion equations with delay[J].Applied Mathematics and Computation, 2018, 337: 144-152. DOI: 10.1016/j.amc.2018.04.057.
[23]ZHANG Q, MEI M, ZHANG C. Higher-order linearized multistep finite difference methods for non-Fickian delay reaction-diffusin equations[J].International Journal of Numerical Analysis and Modeling,2017,14(1): 1-19.
[1] 魏保军, 张武军, 石金娥. 两点边值问题有限体积法的一种加权模估计[J]. 广西师范大学学报(自然科学版), 2015, 33(3): 75-78.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李钰慧, 陈泽柠, 黄中豪, 周岐海. 广西弄岗熊猴的雨季活动时间分配[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 80 -86 .
[2] 李贤江, 石淑芹, 蔡为民, 曹玉青. 基于CA-Markov模型的天津滨海新区土地利用变化模拟[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 133 -143 .
[3] 刘国伦, 宋树祥, 岑明灿, 李桂琴, 谢丽娜. 带宽可调带阻滤波器的设计[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 1 -8 .
[4] 黄燕萍, 韦煜明. 一类分数阶微分方程多点边值问题的多解性[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 41 -49 .
[5] 万雷,罗玉玲,黄星月. 脉冲神经网络硬件系统性能监测平台[J]. 广西师范大学学报(自然科学版), 2018, 36(1): 9 -16 .
[6] 唐国吉,赵婷,何登旭. 扰动广义混合变分不等式的可解性[J]. 广西师范大学学报(自然科学版), 2018, 36(1): 76 -83 .
[7] 卢家宽,刘雪霞,覃雪清. 关于Frobenius群的注记[J]. 广西师范大学学报(自然科学版), 2018, 36(1): 84 -87 .
[8] 张军文,李成思,卢永昌,史生辉. MEKC测定麻花艽中齐墩果酸和熊果酸含量[J]. 广西师范大学学报(自然科学版), 2018, 36(1): 99 -104 .
[9] 毛芳芳,庞锦英,李建鸣,陆春谊. Fe3O4/氧化石墨烯复合纳米粒子的制备及其体外毒性评价[J]. 广西师范大学学报(自然科学版), 2018, 36(1): 112 -120 .
[10] 谢静,唐贺,林万华,孙华英,吴桂生,和晓明,邓科,罗怀容. 小鼠杏仁中央核逆向投射的研究[J]. 广西师范大学学报(自然科学版), 2018, 36(1): 149 -157 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发