广西师范大学学报(自然科学版) ›› 2025, Vol. 43 ›› Issue (3): 113-127.doi: 10.16088/j.issn.1001-6600.2024060302

• 数学与统计学 • 上一篇    下一篇

广义病例队列设计下多类型复发事件的加性转移模型

田亮, 戴家佳*, 李先琪   

  1. 贵州大学数学与统计学院, 贵州贵阳 550025
  • 收稿日期:2024-06-03 修回日期:2024-07-18 出版日期:2025-05-05 发布日期:2025-05-14
  • 通讯作者: 戴家佳(1976—), 女, 贵州黔西人,贵州大学教授,博士。E-mail:jjdai@gzu.edu.cn
  • 基金资助:
    国家自然科学基金(12361057)

Additive Transformation Model of Multivariate Recurrent Events Data under Generalized Case Cohort Design

TIAN Liang, DAI Jiajia*, LI Xianqi   

  1. School of Mathematics and Statistics, Guizhou University, Guiyang Guizhou 550025, China
  • Received:2024-06-03 Revised:2024-07-18 Online:2025-05-05 Published:2025-05-14

摘要: 协变量信息采集成本昂贵是导致大型队列研究或随访型研究止步不前的主要原因,病例队列设计(case-cohort design)是解决这一问题的一种有偏抽样机制,在生存事件中已得到广泛研究。然而,多类型复发事件在生物医学和公共卫生研究中也极为常见,并且相关研究往往需要对试验对象进行长期跟踪,研究成本也可能较为高昂。鉴于此,本文基于一类加性转移模型提出多类型复发事件的广义病例队列设计,选择与时间相关的加权函数,应用逆概率加权方法建立未知参数的加权估计方程,并证明所得参数估计量的相合性和渐近正态性。通过数值模拟和实例分析验证所提方法的有效性。

关键词: 多类型复发事件, 广义病例队列设计, 加性转移模型, 逆概率加权

Abstract: The high cost of collecting covariate information is the main reason why large cohort studies or follow-up studies are halted, and Case-Cohort Design is a biased sampling mechanism to solve this problem, which has been extensively studied in survival events. However, multivariate recurrent events are also very common in biomedical and public health research, which often require long-term follow-up of trial subjects and can be costly. In view of this, this paper proposes a sampling scheme for the design of generalized case cohorts of multivariate recurrent events. By using a class of additive transfer models to fit the data, selecting the time-related weighting function, and useing the inverse probability weighting method, the unknown parameter estimation equation is established, which further proves the coincidence and asymptotic normality of the obtained parameter estimators. Finally, the effectiveness of the proposed method is verified by numerical simulation and case analysis.

Key words: multivariate recurrent events, generalized case cohort design, additive transformation model, inverse probability weighting

中图分类号:  O212.1

[1] PRENTICE R L. A case-cohort design for epidemiologic cohort studies and disease prevention trials[J]. Biometrika, 1986, 73(1): 1-11. DOI: 10.1093/biomet/73.1.1.
[2]CHEN K N. Generalized case-cohort sampling[J]. Journal of the Royal Statistical Society Series B: Statistical Methodology, 2001, 63(4): 791-809. DOI: 10.1111/1467-9868.00313.
[3]XUE X N, XIE X H, GUNTER M, et al. Testing the proportional hazards Assumption in case-cohort analysis[J]. BMC Medical Research Methodology, 2013, 13: 88. DOI: 10.1186/1471-2288-13-88.
[4]邓立凤,丁洁丽,潘莹丽,等.病例队列研究下带约束的Cox模型中参数的一种加权估计方法[J].数学学报(中文版),2023,66(3):569-588. DOI: 10.12386/A20220033.
[5]张佳倩,邓立凤,丁洁丽.比例风险模型下病例队列设计中两种加权估计方法及其应用[J].数学杂志,2022,42(5):445-460. DOI: 10.3969/j.issn.0255-7797.2022.05.006.
[6]KANG S, CAI J W, CHAMBLESS L. Marginal additive hazards model for case-cohort studies with multiple disease outcomes: an application to the Atherosclerosis Risk in Communities (ARIC) study[J]. Biostatistics, 2013, 14(1): 28-41. DOI: 10.1093/biostatistics/kxs025.
[7]KIM S, CAI J W, COUPER D. Improving the efficiency of estimation in the additive hazards model for stratified case-cohort design with multiple diseases[J]. Statistics in Medicine, 2016, 35(2): 282-293. DOI: 10.1002/sim.6623.
[8]王会珍.广义病例队列抽样数据下删失分位数回归模型的统计推断及应用[D].泉州:华侨大学,2023.
[9]刘君娥,黄宏宏.广义case-cohort设计下多类型事件数据的加乘风险回归模型及其应用[J].武汉大学学报(理学版),2021,67(5):441-451. DOI: 10.14188/j.1671-8836.2020.0182.
[10]MAO L, LIN D Y. Semiparametric regression for the weighted composite endpoint of recurrent and terminal events[J]. Biostatistics, 2016, 17(2): 390-403. DOI: 10.1093/biostatistics/kxv050.
[11]ANDERSEN P K, ANGST J, RAVN H. Modeling marginal features in studies of recurrent events in the presence of a terminal event[J]. Lifetime Data Analysis, 2019, 25(4): 681-695. DOI: 10.1007/s10985-019-09462-4.
[12]CHEN X L, WANG Q H, CAI J W, et al. Semiparametric additive marginal regression models for multiple type recurrent events[J]. Lifetime Data Analysis, 2012, 18(4): 504-527. DOI: 10.1007/s10985-012-9226-4.
[13]戴家佳,关楷谕,吴欢.带有终止事件的复发事件数据的加性加速比率模型[J].应用数学学报,2015,38(4):735-750.
[14]孙琴,曲连强.带相依终止事件的复发事件数据的可加可乘比率模型[J].数学学报(中文版),2019,62(1):87-102. DOI: 10.3969/j.issn.0583-1431.2019.01.008.
[15]LYU T M, LUO X H, HUANG C Y, et al. Additive rates model for recurrent event data with intermittently observed time-dependent covariates[J]. Statistical Methods in Medical Research, 2021, 30(10): 2239-2255. DOI: 10.1177/09622802211027593.
[16]刘宇,周稳,李霓.复发事件数据在含治愈个体的半参数比率模型下的经验似然推断[J].广西师范大学学报(自然科学版),2022,40(1):139-149. DOI: 10.16088/j.issn.1001-6600.2021060906.
[17]SCHAUBEL D E, ZENG D L, CAI J W. A semiparametric additive rates model for recurrent event data[J]. Lifetime Data Analysis, 2006, 12(4): 389-406. DOI: 10.1007/s10985-006-9017-x.
[18]LIU Y T, SUN L Q, ZHOU Y. Additive transformation models for recurrent events[J]. Communications in Statistics-Theory and Methods, 2013, 42(22): 4043-4055. DOI: 10.1080/03610926.2013.775300.
[19]杜彦斌,戴家佳,金君.复发事件下一类加性乘性转移模型p阶矩指数稳定性[J].应用数学学报,2018,41(5):642-652.
[20]孙晓娜.多类型复发事件的加性变换模型[D].武汉:华中师范大学,2015.
[21]杜彦斌,戴家佳,金君.多类型复发事件数据下一类半参数转移模型[J].统计与信息论坛,2018,33(4):20-24. DOI: 10.3969/j.issn.1007-3116.2018.04.004.
[22]郦博文,张海祥.多类型复发事件数据下一类Box-Cox转移模型[J].应用数学学报,2016,39(5):656-668.
[23]杨青龙,江芹.多类型复发间隔时间下广义半参数风险模型[J].应用数学学报,2022,45(1):72-87.
[24 ]MAITRA P, AMORIM L D A F, CAI J W. Multiplicative rates model for recurrent events in case-cohort studies[J]. Lifetime Data Analysis, 2020, 26(1): 134-157. DOI: 10.1007/s10985-019-09466-0.
[25]KANG S, CAI J. Marginal hazards model for case-cohort studies with multiple disease outcomes[J]. Biometrika, 2009, 96(4): 887-901. DOI: 10.1093/biomet/asp059.
[26]KANG S, CAI J W. Marginal hazards regression for retrospective studies within cohort with possibly correlated failure time data[J]. Biometrics, 2009, 65(2): 405-414. DOI: 10.1111/j.1541-0420.2008.01077.x.
[27]YIN G S, CAI J W. Additive hazards model with multivariate failure time data[J]. Biometrika, 2004, 91(4): 801-818.
[1] 杨晓兰, 张辉国, 胡锡健. 空间自相关性异质特征的局部极大似然估计及在手足口病防护中的应用[J]. 广西师范大学学报(自然科学版), 2025, 43(2): 179-192.
[2] 李灿, 杨建波, 李荣. 部分线性变系数模型的贝叶斯复合分位数回归[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 117-129.
[3] 唐洁, 秦永松. 含空间自相关误差的空间自回归模型的调整经验似然推断[J]. 广西师范大学学报(自然科学版), 2024, 42(4): 100-114.
[4] 蔡学峰, 李天俊, 黄磊. 基于非参检验及多元回归分析的不同医保医疗费用自付比例研究——以成都市某医院Ⅱ型糖尿病患者为例[J]. 广西师范大学学报(自然科学版), 2024, 42(4): 115-123.
[5] 张治飞, 段谦, 刘乃嘉, 黄磊. 基于Jackknife互信息的高维非线性回归模型研究[J]. 广西师范大学学报(自然科学版), 2022, 40(1): 43-56.
[6] 陈钟秀, 张兴发, 熊强, 宋泽芳. 非对称DAR模型的估计与检验[J]. 广西师范大学学报(自然科学版), 2022, 40(1): 68-81.
[7] 刘宇, 周稳, 李霓. 复发事件数据在含治愈个体的半参数比率模型下的经验似然推断[J]. 广西师范大学学报(自然科学版), 2022, 40(1): 139-149.
[8] 朱恩文, 朱安麒, 王洁丹, 刘玉娇. 基于EEMD-GA-BP模型的风电功率短期预测研究[J]. 广西师范大学学报(自然科学版), 2022, 40(1): 166-174.
[9] 颜海波, 邓罡, 姜云卢. 基于MRCD估计的多元线性回归模型的稳健估计[J]. 广西师范大学学报(自然科学版), 2022, 40(1): 175-186.
[10] 梁鑫, 陈小玲, 张兴发, 李元. 一类带有GARCH类误差项的自回归滑动平均模型[J]. 广西师范大学学报(自然科学版), 2022, 40(1): 195-205.
[11] 田镇滔, 张军舰. 基于分位数方法的超高维删失数据的特征筛选[J]. 广西师范大学学报(自然科学版), 2021, 39(6): 99-111.
[12] 谢冬林, 邓国和. 随机利率跳扩散模型下幂型乘积远期生效期权定价[J]. 广西师范大学学报(自然科学版), 2021, 39(5): 158-172.
[13] 李莉丽, 张兴发, 李元, 邓春亮. 基于高频数据的日频GARCH模型估计[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 68-78.
[14] 林松, 尹长明. 两阶段Logit模型的惩罚广义估计方程估计的渐近性质[J]. 广西师范大学学报(自然科学版), 2019, 37(2): 126-130.
[15] 何琳,杨善朝. α-混合随机域边缘频率插值的渐近方差性[J]. 广西师范大学学报(自然科学版), 2018, 36(1): 88-94.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发