广西师范大学学报(自然科学版) ›› 2025, Vol. 43 ›› Issue (3): 106-112.doi: 10.16088/j.issn.1001-6600.2024041206

• 数学与统计学 • 上一篇    下一篇

一类非线性p-Laplace方程正规化解的存在性

郭新新, 钟延生*   

  1. 福建师范大学数学与统计学院,福建福州 350117
  • 收稿日期:2024-04-12 修回日期:2024-05-20 出版日期:2025-05-05 发布日期:2025-05-14
  • 通讯作者: 钟延生(1981—),男,福建龙岩人, 福建师范大学教授,博士。E-mail: zys08@fjnu.edu.cn
  • 基金资助:
    国家自然科学基金(11671085);福建省自然科学基金(2024J01479)

Existence of Normalized Solutions for a Class of Nonlinear p-Laplace Equations

GUO Xinxin, ZHONG Yansheng*   

  1. College of Mathematics and Statistics, Fujian Normal University, Fuzhou Fujian 350117, China
  • Received:2024-04-12 Revised:2024-05-20 Online:2025-05-05 Published:2025-05-14

摘要: 本文研究一类带扰动项Schrdinger方程在质量超临界情况(即p+p2/N*)下正规化解的存在性。首先,构造适当的辅助函数,验证能量泛函在约束空间上具有山路几何结构;然后,证明当hW1,p充分小时能量泛函满足Palais-Smale紧性条件,由此得到具有正能量山路解的存在性.

关键词: p-Laplace方程, 山路引理, Palais-Smale条件, 正规化解, Pohozaev流形

Abstract: The existence of positive normalized solutions for a class of Schrdinger equations with a perturbation for the mass supercritical case (that is, p+p2/N*) is discussed. Firstly, by constructing an appropriate auxiliary function, it is proved that the energy functional possesses a mountain-pass geometrical structure on the constraint space. Then, the existence of a mountain pass solution with positive energy is established when hW1,p is sufficiently small.

Key words: p-Laplace equation, mountain-pass theorem, Palais-Smale condition, normalized solution, Pohozaev manifold

中图分类号:  O175.29

[1] 闫荣君,韦煜明,冯春华. 带p-Laplacian算子的时滞分数阶微分方程边值问题3个正解的存在性[J]. 广西师范大学学报(自然科学版),2017,35(3): 75-82. DOI: 10.16088/j.issn.1001-6600.2017.03.009.
[2]王亚男,滕凯民. 带消失位势的p-Laplace型拟线性薛定谔方程的正解[J]. 应用数学,2022,35 (3): 593-606. DOI: 10.13642/j.cnki.42-1184/o1.2022.03.015.
[3]DEVINE D,KARAGEORGIS P. Monotonic convergence of positive radial solutions for general quasilinear elliptic systems[J]. Nonlinearity,2024,37(3): 035020. DOI: 10.1088/1361-6544/ad2633.
[4]桑彦彬,贺露萱. 具有奇异非线性项的(p, q)-Laplace方程组的多解性[J]. 应用数学学报,2023,46(6): 845-864.
[5]刘文静,许丽萍. 一类具有组合非线性项的p-Laplace方程的多解性及集中紧性[J]. 高校应用数学学报A辑,2023,38(2): 223-235. DOI: 10.13299/j.cnki.amjcu.002264.
[6]黄洪涛,钟延生.分数阶p-拉普拉斯抛物方程解的单调性和对称性[J].福建师范大学学报(自然科学版),2024,40(2):83-89. DOI: 10.12046/j.issn.1000-5277.2024.02.009.
[7]郭洁,索洪敏,朱怡颖,等.一类具有临界指数和不定位势的Kirchhoff型问题的存在性[J].广西师范大学学报(自然科学版),2023,41(6):105-112. DOI: 10.16088/j.issn.1001-6600.2023030402.
[8]ZHANG Z X,ZHANG Z T. Normalized solutions to p-Laplacian equations with combined nonlinearities[J]. Nonlinearity,2022,35(11): 5621. DOI: 10.1088/1361-6544/ac902c.
[9]CHEN Z,ZOU W M. Existence of normalized positive solutions for a class of nonhomogeneous elliptic equations[J]. The Journal of Geometric Analysis,2023, 33(5): 147. DOI: 10.1007/s12220-023-01199-9.
[10]JEANJEAN L,LUO T,WANG Z Q. Multiple normalized solutions for quasi-linear Schrödinger equations[J]. Journal of Differential Equations,2015,259(8): 3894-3928. DOI: 10.1016/j.jde.2015.05.008.
[11]郭淑艳,郭祖记. 一类非线性薛定谔泊松方程的规范基态解[J]. 应用数学学报,2023,46(6): 938-951.
[12]AGUEH M. Sharp Gagliardo-Nirenberg inequalities via p-Laplacian type equations[J]. Nonlinear Differential Equations and Applications,2008,15: 457-472. DOI: 10.1007/s00030-008-7021-4.
[13]魏蓉,郭祖记.一类薛定谔-泊松系统规范基态解的存在性[J].应用数学,2023,36(2):464-473. DOI: 10.13642/j.cnki.42-1184/o1.2023.02.023.
[14]LIEB E H,LOSS M. Analysis[M]. 2nd ed. Providence, RI: American Mathematical Society,2001.
[15]BERESTYCKI H,LIONS P L. Nonlinear scalar field equations,II existence of infinitely many solutions[J]. Archive for Rational Mechanics and Analysis,1983,82: 347-375. DOI: 10.1007/BF00250556.
[16]ZHANG J F,LEI C Y,LEI J. The existence and nonexistence of normalized solutions for a p-Laplacian equation[J]. Applied Mathematics Letters,2024,148: 108890. DOI: 10.1016/j.aml.2023.108890.
[17]JEANJEAN L. Existence of solutions with prescribed norm for semilinear elliptic equations[J]. Nonlinear Analysis,1997,28(10): 1633-1659. DOI: 10.1016/S0362-546X(96)00021-1.
[18]PALAIS R S. The principle of symmetric criticality[J].Communications in Mathematical Physics, 1979,69(1): 19-30. DOI: 10.1007/BF01941322.
[19]GHOUSSOUB N. Duality and perturbation methods in critical point theory[M]. Cambridge: Cambridge University Press,1993.
[20]CAZENAVE T. Semilinear Schrödinger equations[M]. Providence, RI: American Mathematical Society,2003.
[21]LI H W,ZOU W M. Quasilinear Schrödinger equations: ground state and infinitely many normalized solutions[J]. Pacific Journal of Mathematics,2023,322(1): 99-138. DOI: 10.2140/pjm.2023.322.99.
[1] 蒋群群, 王林峰. 一类非线性p-Laplace方程的Liouville定理[J]. 广西师范大学学报(自然科学版), 2022, 40(2): 116-124.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发