广西师范大学学报(自然科学版) ›› 2022, Vol. 40 ›› Issue (5): 1-23.doi: 10.16088/j.issn.1001-6600.2022021102

• 综述 •    下一篇

微弱电磁信号的物理极限检测:单光子探测器及其研究进展

贺青, 刘剑, 韦联福*   

  1. 西南交通大学 信息科学与技术学院, 四川 成都 610031
  • 收稿日期:2022-02-11 修回日期:2022-03-28 出版日期:2022-09-25 发布日期:2022-10-18
  • 通讯作者: 韦联福(1965—), 男(壮族), 广西融安人, 西南交通大学教授, 博导。E-mail: lfwei@swjtu.edu.cn
  • 基金资助:
    国家自然科学基金(91321104)

Single-Photon Detectors as the Physical Limit Detections of Weak Electromagnetic Signals

HE Qing, LIU Jian, WEI Lianfu*   

  1. School of Information Science and Technology, Southwest Jiaotong University, Chengdu Sichuan 610031, China
  • Received:2022-02-11 Revised:2022-03-28 Online:2022-09-25 Published:2022-10-18

摘要: 近年来,研发以直接调控量子系统波函数本身为主要标志的第二代量子技术,如原子钟和量子信息技术(主要包括量子通信、量子计算机和量子传感)等受到了国际学术界和产业界的极大关注。其中,实现微弱电磁信号物理极限检测的单光子探测器是实现光量子信息处理必不可少的关键器件。面向量子信息处理的应用,本文介绍单光子探测的基本原理及单光子探测器主要的性能指标,系统总结在光量子信息处理研究中发挥重要作用的超导单光子探测器近20年来的研究进展,并对推动未来微波量子信息处理研究的微波单光子态探测器的发展前景进行展望。

关键词: 量子信息处理, 光子, 单光子探测器, 半导体, 超导

Abstract: In recent years, great attention have been paid to the second-generation quantum technologies, delivered by the directly manipulating wave functions of quantum systems, including atomic clocks and quantum information technologies (such as quantum communication, quantum computation, and quantum sensing). As the basic and key devices, single photon detectors play an important role in optical quantum information processing. Focusing on the application in quantum information application, this paper introduces the basic principles of single-photon detection and the main performance indicators of single-photon detectors, systematically summarizes the research progress of superconducting single-photon detectors that play an important role in the research of optical quantum information processing in the past two decades, and forecasts the development prospect of microwave single photon state detector which will promote the research of microwave quantum information processing in the future.

Key words: quantum information processing, photon, single photon detector, semiconductor, superconductivity

中图分类号: 

  • O439
[1]EISAMAN M D, FAN J, MIGDALL A, et al. Invited review article: single-photon sources and detectors[J]. Review of Scientific Instruments, 2011, 82(7):071101. DOI:10.1063/1.3610677.
[2]王成杰,石发展,王鹏飞,等.基于金刚石NV色心的纳米尺度磁场测量和成像技术[J]. 物理学报, 2018, 67(13):130701. DOI:10.7498/aps.67.20180243.
[3]MAHONY D, BHATTACHARYYA S. Evaluation of highly entangled states in asymmetrically coupled three NV centers by quantum simulator[J]. Applied Physics Letters, 2021, 118(20): 204004. DOI:10.1063/5.0043334.
[4]张正源, 张天乙, 刘宗凯,等. 里德堡原子多体相互作用的研究进展[J]. 物理学报, 2020, 69(18):180301. DOI:10.7498/aps.69.20200649.
[5]JING M Y, HU Y, MA J, et al. Atomic superheterodyne receiver based on microwave-dressed Rydberg spectroscopy[J]. Nature Physics, 2020, 16(9): 911-915. DOI:10.1038/s41567-020-0918-5.
[6]张博,贺青,杨欣达,等.共面波导型超导微波功分器:设计,制备和测试[J]. 物理学报, 2021, 70(15):158501. DOI:10.7498/aps.70.20210168.
[7]韩金舸,欧阳鹏辉,李恩平,等.超导约瑟夫森结物理参数的实验推算[J]. 物理学报, 2021, 70(17):170304. DOI:10.7498/aps.70.20210393.
[8]ARUTE F, ARYA K, BABBUSH R, et al. Quantum supremacy using a programmable superconducting processor[J]. Nature, 2019, 574(7779): 505-510. DOI:10.1038/s41586-019-1666-5.
[9]GONG M, WANG S Y, ZHA C, et al. Quantum walks on a programmable two-dimensional 62-qubit superconducting processor[J]. Science, 2021, 372(6545): 948-952.
[10]ZHU Q L, CAO S R, CHEN F S, et al. Quantum computational advantage via 60-qubit 24-cycle random circuit sampling[J]. Science Bulletin, 2022, 67(3): 240-245.
[11]KOOLSTRA G, YANG G, SCHUSTER D I. Coupling a single electron on superfluid Helium to a superconducting resonator[J]. Nature Communications, 2019, 10(1): 5323. DOI:10.1038/s41467-019-13335-7.
[12]DYKMAN M I, KONO K, KONSTANTINOV D, et al. Ripplonic lamb shift for electrons on liquid Helium[J]. Physical Review Letters, 2017, 119(25): 256802. DOI:10.1103/PhysRevLett.119.256802.
[13]MILLER A J, LITA A E, CALKINS B, et al. Compact cryogenic self-aligning fiber-to-detector coupling with losses below one percent[J]. Optics Express, 2011, 19(10): 9102-9110. DOI:10.1364/OE.19.009102.
[14]FUKUDA D, FUJII G, NUMATA T, et al. Titanium-based transition-edge photon number resolving detector with 98% detection efficiency with index-matched small-gap fiber coupling[J]. Optics Express, 2011, 19(2): 870-875. DOI:10.1364/OE.19.000870.
[15]戴茂春,王轶文,戴越, 等. 一种超导单光子探测系统中光纤对准装置及光纤对准方法: CN201910066766.2[P].2020-04-07.
[16]KIM J, TAKEUCHI S, YAMAMOTO Y, et al. Multiphoton detection using visible light photon counter[J]. Applied Physics Letters, 1999, 74(7): 902-904. DOI:10.1063/1.123404.
[17]MEZZENA R, FAVERZANI M, FERRI E, et al. Development of microwave kinetic inductance detectors for IR single-photon counting[J]. Journal of Low Temperature Physics, 2020, 199(1): 73-79. DOI:10.1007/s10909-019-02251-1.
[18]LITA A E, MILLER A J, NAM S W. Counting near-infrared single-photons with 95% efficiency[J]. Optics Express, 2008, 16(5): 3032-3040. DOI:10.1364/OE.16.003032.
[19]GUNDACKER S, HEERING A. The silicon photomultiplier: fundamentals and applications of a modern solid-state photon detector[J]. Physics in Medicine and Biology, 2020, 65(17): 17TR01. DOI:10.1088/1361-6560/ab7b2d.
[20]BECKER W. Advanced time-correlated single photon counting techniques[M]. Berlin: Springer,2005.
[21]HAKAMATA T, KUME H, OKANO K, et al. Photomultiplier tubes: basics and applications[M]. 3rd ed. Hamamatsu: Hamamatsu Photonics K.K., 2007.
[22]ZHANG L, CHITNIS D, CHUN H, et al. A comparison of APD-and SPAD-based receivers for visible light communications[J]. Journal of Lightwave Technology, 2018, 36(12): 2435-2442. DOI:10.1109/JLT.2018.2811180.
[23]THOMAS O, YUAN Z L, DYNES J F, et al. Efficient photon number detection with silicon avalanche photodiodes[J]. Applied Physics Letters, 2010, 97(3): 031102. DOI:10.1063/1.3464556.
[24]YANIKGONUL S, LEONG V, ONG J R, et al. Integrated avalanche photodetectors for visible light[J]. Nature Communications, 2021, 12(1): 1834. DOI:10.1038/s41467-021-22046-x.
[25]FITCH M J, JACOBS B C, PITTMAN T B, et al. Photon-number resolution using time-multiplexed single-photon detectors[J]. Physical Review A, 2003, 68(4): 043814. DOI:10.1103/PhysRevA.68.043814.
[26]YOU L X, LI H, ZHANG W J, et al. Superconducting nanowire single-photon detector on dielectric optical films for visible and near infrared wavelengths[J]. Superconductor Science and Technology, 2017, 30(8): 084008. DOI:10.1088/1361-6668/aa7495.
[27]CHEN X H, HAN S, LU Y M, et al. High signal/noise ratio and high-speed deep UV detector on β-Ga2O3 thin film composed of both (400) and (201) orientation β-Ga2O3 deposited by the PLD method[J]. Journal of Alloys and Compounds, 2018, 747: 869-878. DOI:10.1016/j.jallcom.2018.03.094.
[28]WANG Y Q, LI B P, REN P L, et al. Expansion of the response range of photoelectrochemical UV detector using an ITO/Ag-nanowire/quartz UV-visible transparent conductive electrode[J]. Journal of Materials Chemistry C, 2022, 10(11): 4157-4165. DOI:10.1039/D1TC05815K.
[29]KALRA A, VURA S, RATHKANTHIWAR S, et al. Demonstration of high-responsivity epitaxial β-Ga2O3/GaN metal-heterojunction-metal broadband UV-A/UV-C detector[J]. Applied Physics Express, 2018, 11(6): 064101. DOI:10.7567/APEX.11.064101.
[30]PAN X J, CHENG L K, CHEN L L, et al. A wire-like UV detector based on TiO2-coated ZnO nanotube arrays[J]. Science of Advanced Materials, 2019, 11(3): 392-395. DOI:10.1166/sam.2019.3451.
[31]SU L L, ZHOU D, LU H, et al. Recent progress of SiC UV single photon counting avalanche photodiodes[J]. Journal of Semiconductors, 2019, 40(12): 121802. DOI:10.1088/1674-4926/40/12/121802.
[32]MUÑOZ E, MONROY E, PAU J L, et al. III nitrides and UV detection[J]. Journal of Physics: Condensed Matter, 2001, 13(32): 7115. DOI:10.1088/0953-8984/13/32/316.
[33]PAU J L, MCCLINTOCK R, MINDER K, et al. Geiger-mode operation of back-illuminated GaN avalanche photodiodes[J]. Applied Physics Letters, 2007, 91(4): 041104. DOI:10.1063/1.2759980.
[34]YAN F, LUO Y, ZHAO J H, et al. 4H-SiC visible blind UV avalanche photodiode[J]. Electronics Letters, 1999, 35(11): 929-930. DOI:10.1049/el:19990641.
[35]XIN X, YAN F, ALEXANDROVE P, et al. Demonstration of 4H-SiC UV single photon counting avalanche photodiode[J]. Electronics Letters, 2005, 41(4): 212-214. DOI:10.1049/el:20057320.
[36]BECK A L, KARVE G, WANG S, et al. Geiger mode operation of ultraviolet 4H-SiC avalanche photodiodes[J]. IEEE Photonics Technology Letters, 2005, 17(7): 1507-1509.
[37]LI L H, ZHOU D, LU H, et al. 4H-SiC avalanche photodiode linear array operating in Geiger mode[J]. IEEE Photonics Journal, 2017, 9(5): 1-7.
[38]ROSCHKE M, SCHWIERZ F. Electron mobility models for 4H, 6H, and 3C SiC [MESFETs][J]. IEEE Transactions on Electron Devices, 2001, 48(7): 1442-1447.
[39]PEARTON S J, ZOLPER J C, SHUL R J, et al. GaN: Processing, defects, and devices[J]. Journal of Applied Physics, 1999, 86(1): 1-78. DOI:10.1063/1.371145.
[40]MONROY E, OMNÈS F, CALLE F. Wide-bandgap semiconductor ultraviolet photodetectors[J]. Semiconductor Science and Technology, 2003, 18(4): R33. DOI:10.1088/0268-1242/18/4/201.
[41]POWELL A R, ROWLAND L B. SiC materials-progress, status, and potential roadblocks[J]. Proceedings of the IEEE, 2002, 90(6): 942-955.
[42]CHUNNILALL C J, DEGIOVANNI I P, KÜCK S, et al. Metrology of single-photon sources and detectors: a review[J]. Optical Engineering, 2014, 53(8): 081910.
[43]KIRDODA J, DUMAS D C S, MILLAR R W, et al. Geiger mode Ge-on-Si single-photon avalanche diode detectors[C]//2019 IEEE 2nd British and Irish Conference on Optics and Photonics (BICOP). Piscataway,NJ:IEEE, 2019.
[44]THORBURN F E, HUDDLESTON L L, KIRDODA J, et al. High efficiency planar geometry germanium-on-silicon single-photon avalanche diode detectors[C]// Proceedings of the SPIE 11386, Advanced Photon Counting Techniques XIV. Bellingham,WA:SPIE, 2020: 113860N.
[45]LLIN L F, KIRDODA J, THORBURN F, et al. High sensitivity Ge-on-Si single-photon avalanche diode detectors[J]. Optics Letters, 2020, 45(23): 6406-6409. DOI:10.1364/OL.396756.
[46]SIGNORELLI F, TELESCA F, TOSI A. Photon detection efficiency simulation of InGaAs/InP SPAD[C]// 2020 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD). Piscataway,NJ: IEEE, 2020.
[47]WANG C, WANG J Y, XU Z Y, et al. Design considerations of InGaAs/InP single-photon avalanche diode for photon-counting communication[J]. Optik, 2019, 185: 1134-1145. DOI:10.1016/j.ijleo.2019.04.053.
[48]BLAKE P, HILL E W, CASTRO NETO A H, et al. Making graphene visible[J]. Applied Physics Letters, 2007, 91(6): 063124. DOI:10.1063/1.2768624.
[49]WARBURTON R E, ITZLER M, BULLER G S. Free-running, room temperature operation of an InGaAs/InP single-photon avalanche diode[J]. Applied Physics Letters, 2009, 94(7): 071116. DOI:10.1063/1.3079668.
[50]CAMPBELL J C, TSANG W T, QUA G J, et al. High-speed InP/InGaAsP/InGaAs avalanche photodiodes grown by chemical beam epitaxy[J]. IEEE Journal of Quantum Electronics, 1988, 24(3): 496-500.
[51]ITZLER M A, BEN-MICHAEL R, HSU C F, et al. Single photon avalanche diodes (SPADs) for 1.5 μm photon counting applications[J]. Journal of Modern Optics, 2007, 54(2/3): 283-304. DOI:10.1080/09500340600792291.
[52]JIANG X, ITZLER M A, BEN-MICHAEL R, et al. InGaAsP-InP avalanche photodiodes for single photon detection[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(4): 895-905.
[53]ITZLER M A, JIANG X D, ENTWISTLE M, et al. Advances in InGaAsP-based avalanche diode single photon detectors[J]. Journal of Modern Optics, 2011, 58(3/4): 174-200.
[54]ASSEFA S, XIA F N, VLASOV Y A. Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects[J]. Nature, 2010, 464(7285): 80-84. DOI:10.1038/nature08813.
[55]李春光, 王佳, 吴云, 等. 中国超导电子学研究及应用进展[J]. 物理学报, 2021, 70(1): 018501. DOI:10.7498/aps.70.20202121.
[56]刘剑, 黄典, 贺青,等. 基于光子数可分辨探测器的单脉冲光子数检测[J]. 激光技术, 2022, 46(1):58-63. DOI:10.7510/jgjs.issn.1001-3806.2022.01.004.
[57]GOL’TSMAN G N, OKUNEV O, CHULKOVA G, et al. Picosecond superconducting single-photon optical detector[J]. Applied Physics Letters, 2001, 79(6): 705-707. DOI:10.1063/1.1388868.
[58]尤立星.光量子信息利器:超导纳米线单光子探测器[J]. 物理, 2021, 50(10): 678-683. DOI:10.7693/wl20211004.
[59]DAY P K, LEDUC H G, MAZIN B A, et al. A broadband superconducting detector suitable for use in large arrays[J]. Nature, 2003, 425(6960): 817-821. DOI:10.1038/nature02037.
[60]YOU L X. Superconducting nanowire single-photon detectors for quantum information[J]. Nanophotonics, 2020, 9(9): 2673-2692. DOI:10.1515/nanoph-2020-0186.
[61]ZHONG H S, WANG H, DENG Y H, et al. Quantum computational advantage using photons[J]. Science, 2020, 370(6523): 1460-1463. DOI:10.1126/science.abe8770.
[62]史生才,李婧. 超导隧道结在事件视界望远镜黑洞成像及射电天文中的应用[J]. 科学通报, 2019, 64(20): 2067-2069. DOI:10.1360/TB-2019-0073.
[63]DE SIMONI G, STRAMBINI E, MOODERA J S, et al. Toward the absolute spin-valve effect in superconducting tunnel junctions[J]. Nano Letters, 2018, 18(10): 6369-6374. DOI:10.1021/acs.nanolett.8b02723.
[64]WANG Y W, ZHOU P J, WEI L F, et al. Photon-detections via probing the switching current shifts of Josephson junctions[J]. Physica C: Superconductivity and Its Applications, 2015, 515: 49-53. DOI:10.1016/j.physc.2015.05.005.
[65]WALSH E D, JUNG W, LEE G H, et al. Josephson junction infrared single-photon detector[J]. Science, 2021, 372(6540): 409-412. DOI:10.1126/science.abf5539.
[66]黄典, 戴万霖, 王轶文,等. 超导动态电感单光子探测器的噪声处理[J]. 物理学报, 2021, 70(14): 140703. DOI:10.7498/aps.70.20210185.
[67]LI H J, WANG Y W, WEI L F, et al. Experimental demonstrations of high-Q superconducting coplanar waveguide resonators[J]. Chinese Science Bulletin, 2013, 58(20): 2413-2417. DOI:10.1007/s11434-013-5882-3.
[68]GUO W, LIU X, WANG Y, et al. Counting near infrared photons with microwave kinetic inductance detectors[J]. Applied Physics Letters, 2017, 110(21): 212601. DOI:10.1063/1.4984134.
[69]LIU X, GUO W, WANG Y, et al. Superconducting micro-resonator arrays with ideal frequency spacing[J]. Applied Physics Letters, 2017, 111(25): 252601. DOI:10.1063/1.5016190.
[70]LIU X, GUO W, WANG Y, et al. Cryogenic LED pixel-to-frequency mapper for kinetic inductance detector arrays[J]. Journal of Applied Physics, 2017, 122(3): 034502. DOI: 10.1063/1.4994170.
[71]徐达, 钟青, 曹文会,等.二阶梯度交叉耦合超导量子干涉仪电流传感器研制[J]. 物理学报, 2021, 70(12): 128501. DOI:10.7498/aps.70.20201816.
[72]SCHLOTTMANN E, VON HELVERSEN M, LEYMANN H A M, et al. Exploring the photon-number distribution of bimodal microlasers with a transition edge sensor[J]. Physical Review Applied, 2018, 9(6): 064030. DOI:10.1103/PhysRevApplied.9.064030.
[73]ROSENBERG D, LITA A E, MILLER A J, et al. Noise-free high-efficiency photon-number-resolving detectors[J]. Physical Review A, 2005, 71(6): 061803.
[74]尤立星, 张腊宝, 史生才,等. 高性能单光子探测技术研究进展[J]. 中国基础科学, 2020,22(1): 25-29. DOI:10.3969/j.issn.1009-2412.2020.01.04.
[75]吴静远, 刘肇国, 张彤. 高增益红外单光子探测技术研究进展[J]. 红外与激光工程, 2021, 50(1): 161-170. DOI:10.3788/IRLA20211016.
[76]JONES M L, WILKES G J, VARCOE B T H. Single microwave photon detection in the micromaser[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2009, 42(14): 145501. DOI:10.1088/0953-4075/42/14/145501.
[77]HAROCHE S, BRUNE M, RAIMOND J M. From cavity to circuit quantum electrodynamics[J]. Nature Physics, 2020, 16(3): 243-246. DOI:10.1038/s41567-020-0812-1.
[78]FRAGNER A, GÖPPL M, FINK J M, et al. Resolving vacuum fluctuations in an electrical circuit by measuring the Lamb shift[J]. Science, 2008, 322(5906): 1357-1360. DOI:10.1126/science.1164482.
[79]SCHUSTER D I, HOUCK A A, SCHREIER J A, et al. Resolving photon number states in a superconducting circuit[J]. Nature, 2007, 445(7127): 515-518. DOI: 10.1038/nature05461.
[80]CHEN Y F, HOVER D, SENDELBACH S, et al. Microwave photon counter based on Josephson junctions[J]. Physical Review Letters, 2011, 107(21): 217401. DOI:10.1103/PhysRevLett.107.217401.
[81]INOMATA K, LIN Z R, KOSHINO K, et al. Single microwave-photon detector using an artificial Λ-type three-level system[J]. Nature Communications, 2016, 7(1): 12303. DOI:10.1038/ncomms12303.
[82]ROMERO G, GARCÍA-RIPOLL J J, SOLANO E. Microwave photon detector in circuit QED[J]. Physical Review Letters, 2009, 102(17): 173602. DOI:10.1103/PhysRevLett.102.173602.
[83]郭婷婷,潘佳政,孙国柱,等.行波微波光子探测[J].微波学报,2021(S1):258-261.
[1] 岳宏卫, 谢清连, 韦保林, 晋良念, 谢跃雷, 李琦, 周茜. 嵌入Fabry-Perot谐振腔的Tl-2212双晶约瑟夫森结的特性[J]. 广西师范大学学报(自然科学版), 2011, 29(2): 10-14.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张喜龙, 韩萌, 陈志强, 武红鑫, 李慕航. 面向复杂数据流的集成分类综述[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 1 -21 .
[2] 童凌晨, 李强, 岳鹏鹏. 基于CiteSpace的喀斯特土壤有机碳研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 22 -34 .
[3] 帖军, 隆娟娟, 郑禄, 牛悦, 宋衍霖. 基于SK-EfficientNet的番茄叶片病害识别模型[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 104 -114 .
[4] 翁烨, 邵德盛, 甘淑. 等式约束病态最小二乘的主成分Liu估计解法[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 115 -125 .
[5] 覃城阜, 莫芬梅. C3-和C4-临界连通图的结构[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 145 -153 .
[6] 田芮谦, 宋树祥, 刘振宇, 岑明灿, 蒋品群, 蔡超波. 逐次逼近型模数转换器研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 24 -35 .
[7] 张师超, 李佳烨. 知识矩阵表示[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 36 -48 .
[8] 梁钰婷, 罗玉玲, 张顺生. 基于压缩感知的混沌图像加密研究综述[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 49 -58 .
[9] 郝雅茹, 董力, 许可, 李先贤. 预训练语言模型的可解释性研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 59 -71 .
[10] 于梦竹, 唐振军. 基于手工特征的视频哈希研究综述[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 72 -89 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发